
 IGraph/M
 the igraph interface for Mathematica

This notebook can be opened using the command IGDocumentation[] or through the Documentation Centre. It
cannot be saved, so feel free to edit and evaluate input cells, and experiment!

The documentation is currently incomplete. Contributions are very welcome!

Introduction
IGraph/M provides a Mathematica interface to the popular igraph network analysis package, as well as many other
functions for working with graphs in Mathematica. The purpose of IGraph/M is not to replace Mathematica’s built-in graph

theory functionality, but to complement it. Thus the IGraph/M interface is designed to interoperate seamlessly with built-
in functions and datatypes, while also being familiar to users of other igraph interfaces (R, Python or C).

The full igraph functionality is not yet exposed. Priority is given to functionality that is not currently built into Mathemat-
ica. While many of the functions that IGraph/M provides overlap with built-in ones, like IGBetweenness and

BetweeneessCentrality, there are usually some relevant differences. For example, IGBetweenness uses edge

weights, while the built-in function BetweennessCentrality does not.

Basic usage
The package can be loaded using

In[1]:= Needs"IGraphM`"

Out[1]=

IGraph/M 0.6.5 (December 21, 2022)

Evaluate IGDocumentation[] to get started.

The list of included functions can be queried with the command below. Notice that their names always have the IG prefix.
Click on the name of a function to see its usage message.

In[2]:= ? IGraphM`*

Or just type a question mark followed by the symbol’s name:

In[3]:= ? IGVersion

IGVersion[] returns the IGraph/M version along with the version of the igraph library in use.

In[4]:= IGVersion[]

Out[4]= IGraph/M 0.6.5 (December 21, 2022)

igraph 0.9.10-23-g5635203bd (Dec 21 2022)

Mac OS X x86 (64-bit)

IGraph/M functions work directly with Mathematica’s built-in Graph datatype. No new special graph datatype is

introduced.

http://igraph.org/
http://igraph.org/
https://igraph.org/r/
https://igraph.org/python/
https://igraph.org/c/

Let’s take a look at a few examples. Let us first generate a graph using the built-in functions of Mathematica.

In[5]:= SeedRandom[42];

g = RandomGraphBarabasiAlbertGraphDistribution[100, 2]

Out[6]=

We can compute the betweenness centrality of each vertex either using IGraph/M, ...

In[7]:= IGBetweenness[g]

Out[7]= {1118.26, 1058.15, 540.601, 127.365, 1175.53, 678.175, 206.929, 128.576, 204.019, 535.316,

487.858, 391.669, 0., 135.039, 0., 52.5324, 104.28, 12.2286, 75.8798, 110.155, 68.8282,

13.9095, 46.4209, 99.3299, 0., 168.196, 213.871, 358.855, 0., 64.9572, 5.12619, 102.369,

17.978, 15.569, 95.7266, 8.45843, 25.4984, 13.0274, 0., 71.2012, 47.2895, 32.4444, 8.20833,

0., 27.0286, 10.9357, 4.60238, 0., 14.7095, 24.7944, 79.125, 7.38301, 22.0817, 43.9635,

11.7135, 10.9952, 40.8782, 11.2429, 0., 60.0431, 9.36667, 32.4529, 85.4487, 100.431,

15.205, 93.2876, 60.0548, 9.2, 0., 0., 10.512, 9.37438, 8.42222, 45.7937, 3.61667, 9.23333,

53.3897, 11.4012, 22.0959, 5.24091, 10.2647, 8.66017, 9.97438, 11.0429, 15.8765, 12.7798,

0., 30.1744, 0., 0., 4.0373, 9.7, 1., 10.4883, 0., 0., 13.7861, 13.8594, 1.7, 2.80952}

... or using Mathematica’s built-ins, and obtain the same result.

In[8]:= BetweennessCentrality[g]

Out[8]= {1118.26, 1058.15, 540.601, 127.365, 1175.53, 678.175, 206.929, 128.576, 204.019, 535.316,

487.858, 391.669, 0., 135.039, 0., 52.5324, 104.28, 12.2286, 75.8798, 110.155, 68.8282,

13.9095, 46.4209, 99.3299, 0., 168.196, 213.871, 358.855, 0., 64.9572, 5.12619, 102.369,

17.978, 15.569, 95.7266, 8.45843, 25.4984, 13.0274, 0., 71.2012, 47.2895, 32.4444, 8.20833,

0., 27.0286, 10.9357, 4.60238, 0., 14.7095, 24.7944, 79.125, 7.38301, 22.0817, 43.9635,

11.7135, 10.9952, 40.8782, 11.2429, 0., 60.0431, 9.36667, 32.4529, 85.4487, 100.431,

15.205, 93.2876, 60.0548, 9.2, 0., 0., 10.512, 9.37438, 8.42222, 45.7937, 3.61667, 9.23333,

53.3897, 11.4012, 22.0959, 5.24091, 10.2647, 8.66017, 9.97438, 11.0429, 15.8765, 12.7798,

0., 30.1744, 0., 0., 4.0373, 9.7, 1., 10.4883, 0., 0., 13.7861, 13.8594, 1.7, 2.80952}

Let us now assign weights to the edges. Many IGraph/M functions, including IGBetweenness, support edge weights.

In[9]:= wg = SetPropertyg, EdgeWeight RandomReal[1, EdgeCount[g]];

2 | IGraph/M Documentation

In[10]:= IGBetweenness[wg]
Out[10]=

{1569., 1509., 697., 506., 1510., 948., 173., 0., 106., 827., 663., 379., 0., 318., 0., 360., 0.,

0., 83., 129., 1., 0., 227., 582., 0., 91., 236., 213., 0., 60., 0., 334., 1., 53., 549., 0.,

0., 0., 0., 10., 0., 0., 0., 0., 68., 68., 17., 357., 27., 16., 80., 0., 0., 0., 437., 0., 0.,

0., 52., 22., 0., 0., 62., 139., 93., 187., 1., 7., 0., 0., 0., 16., 0., 69., 10., 98., 0., 1.,

4., 21., 0., 0., 0., 0., 0., 0., 0., 43., 0., 0., 98., 0., 0., 0., 0., 0., 0., 63., 25., 4.}

Notice that Mathematica 13.0 does not include functionality to compute weighted vertex betweenness. The built-in

function BetweennessCentrality[] ignores the weights.

In[11]:= BetweennessCentrality[wg]
Out[11]=

{1118.26, 1058.15, 540.601, 127.365, 1175.53, 678.175, 206.929, 128.576, 204.019, 535.316,

487.858, 391.669, 0., 135.039, 0., 52.5324, 104.28, 12.2286, 75.8798, 110.155, 68.8282,

13.9095, 46.4209, 99.3299, 0., 168.196, 213.871, 358.855, 0., 64.9572, 5.12619, 102.369,

17.978, 15.569, 95.7266, 8.45843, 25.4984, 13.0274, 0., 71.2012, 47.2895, 32.4444, 8.20833,

0., 27.0286, 10.9357, 4.60238, 0., 14.7095, 24.7944, 79.125, 7.38301, 22.0817, 43.9635,

11.7135, 10.9952, 40.8782, 11.2429, 0., 60.0431, 9.36667, 32.4529, 85.4487, 100.431,

15.205, 93.2876, 60.0548, 9.2, 0., 0., 10.512, 9.37438, 8.42222, 45.7937, 3.61667, 9.23333,

53.3897, 11.4012, 22.0959, 5.24091, 10.2647, 8.66017, 9.97438, 11.0429, 15.8765, 12.7798,

0., 30.1744, 0., 0., 4.0373, 9.7, 1., 10.4883, 0., 0., 13.7861, 13.8594, 1.7, 2.80952}

Let us delete the minimum feedback edge set to obtain an acyclic graph:

In[12]:= acg = EdgeDelete[g, IGFeedbackArcSet[g]]
Out[12]=

And try out a few of igraph’s layout algorithms.

In[13]:= IGLayoutGraphOpt[acg], IGLayoutKamadaKawai[acg], IGLayoutFruchtermanReingold[acg]

Out[13]=

 , ,

Layout functions typically have many options to tune:

In[14]:= Options[IGLayoutGraphOpt]
Out[14]=

{MaxIterations 500, NodeCharge 0.001, NodeMass 30, SpringLength 0,

SpringConstant 1, MaxStepMovement 5, Continue False, Align True}

IGraph/M Documentation | 3

Increasing the number of iterations will usually improve the result.

In[15]:= IGLayoutGraphOptacg, "MaxIterations" 5000
Out[15]=

A final note

Please refer to the usage messages for information on how to use each function. For more information on the meaning of
various function options, the algorithms used by the functions, references, etc. please refer to the C/igraph documenta-
tion. The igraph documentation provides article references for most nontrivial algorithms.

The following sections provide general information on each functionality area, and show common usage patterns.

Graph creation
All the graph creation functions in IGraph/M take any standard Mathematica Graph option such as VertexLabels,

EdgeLabels, VertexStyle, GraphStyle, PlotTheme, etc.

In[16]:= IGLCF[{5, -5}, 7, GraphStyle "SmallNetwork"]
Out[16]=

1

2

3

4

5

6
7

8

9

10

11

12

13
14

Deterministic graph generators

IGShorthand

IGShorthand provides an easy way to create small graphs from a simple and quick-to-type notation.

In[17]:= ? IGShorthand

IGShorthand["..."] builds a graph from a shorthand notation such as "a->b<-c" or "a-b,c-d".

4 | IGraph/M Documentation

http://igraph.org/c/doc/
http://igraph.org/c/doc/

The available options are:

◼SelfLoops True keeps self-loops in the graph.

◼MultiEdges True keeps parallel edges in the graph.

Construct a cycle graph.

In[18]:= IGShorthand["1-2-3-4-1"]
Out[18]=

1

2

3

4

Vertex labels are shown by default. They can be turned off using VertexLabels None.

In[19]:= IGShorthand["1-2-3-1", VertexLabels None]
Out[19]=

The interpretation of - as directed or undirected is controlled by the DirectedEdges option.

In[20]:= IGShorthand"1-2-3-1", DirectedEdges True
Out[20]=

1 2

3

IGraph/M Documentation | 5

Directed edges can be input using ->, <- or <->.

In[21]:= IGShorthand"Jim -> Suzy <- Joe"
Out[21]=

Jim

Suzy

Joe

<-> is interpreted as a pair of directed edges.

In[22]:= IGShorthand["1<->2->3"]
Out[22]=

1 2 3

Mixed graphs, containing both directed and undirected edges, are supported. Note that mixed graphs are not allowed as

input to most IGraph/M functions.

In[23]:= IGShorthand["1-2<-3"]
Out[23]=

1 2 3

Disconnected components are separated by commas.

In[24]:= IGShorthand["1, 2-3, 4-5-6"]
Out[24]=

123

4 5 6

Groups of vertices can be given using the colon separator. Edges will be connected to each vertex in the group. This

makes it easy to specify a complete graph ...

In[25]:= IGShorthand["A:B:C:D:E -- A:B:C:D:E"]
Out[25]=

A

B

C

DE

6 | IGraph/M Documentation

... or a complete bipartite graph.

In[26]:= IGLayoutBipartite@IGShorthand["a:b:c - 1:2:3:4"]
Out[26]=

a

b

c

1

2

3

4

Vertex names are taken as strings, except when they can be interpreted as an integer.

In[27]:= IGShorthand["xyz - 137"] // VertexList // InputForm
Out[27]//InputForm=

{"xyz", 137}

Spaces are allowed in vertex names, and edges can be specified using any number of - characters.

In[28]:= IGShorthand"Sophus Lie --- Camille Jordan"
Out[28]=

Sophus LieCamille Jordan

Self-loops and parallel edges are removed by default because these are often created as an undesired by-product of
vertex groups. They can be re-enabled using the SelfLoops or MultiEdges options when desired.

In[29]:= IGShorthand"1:2:3 - 1:2:3", SelfLoops True
Out[29]=

1

2

3

In[30]:= IGShorthand"1:2:3 - 1:2:3", SelfLoops True, MultiEdges True
Out[30]=

1

2

3

IGraph/M Documentation | 7

In[31]:= IGShorthand"1-2-1-3", MultiEdges True
Out[31]=

12 3

The vertex order will follow the order of appearance of vertices in the input string. To control the order, simply list vertices

at the beginning of the shorthand specification.

In[32]:= IGShorthand["4-3-1-2-4"] // VertexList
Out[32]=

{4, 3, 1, 2}

In[33]:= IGShorthand["1,2,3,4, 4-3-1-2-4"] // VertexList
Out[33]=

{1, 2, 3, 4}

Create an interactive graph editor that dynamically visualizes betweenness.

In[34]:= Manipulate

IGShorthandspec, VertexSize {"Scaled", 0.06}, EdgeStyle Gray //

IGVertexMap[ColorData["NeonColors"], VertexStyle IGBetweenness/*Rescale],

{spec, "1-2-3-1-4"}, InputField#, String, ContinuousAction True &,

Initialization Needs"IGraphM`"

Out[34]=

spec 1-2-3-1-4

1

2

3

4

IGEmptyGraph

In[35]:= ? IGEmptyGraph

IGEmptyGraph[] gives a graph with no edges or vertices.
IGEmptyGraph[n] gives a graph with no edges and n vertices.

IGEmptyGraph is a convenience function for creating graphs with no edges.

Create a null graph.

In[36]:= IGEmptyGraph[] // VertexCount
Out[36]=

0

8 | IGraph/M Documentation

Create an empty graph on 15 vertices.

In[37]:= IGEmptyGraph[15]
Out[37]=

The built-in EmptyGraphQ returns True for these graphs.

In[38]:= EmptyGraphQ[%]
Out[38]=

True

IGLCF

In[39]:= ? IGLCF

IGLCF[shifts, repeats] creates a graph from LCF notation.
IGLCF[shifts, repeats, vertexCount] creates a graph from LCF notation with the number of vertices specified.

IGLCF[{k1, k2, …}, n] creates a graph based on the LCF notation [k1, k2, …]n.

The Möbius–Kantor graph is [5, -5]8.

In[40]:= IGLCF{5, -5}, 8, GraphStyle "DiagramGreen"

Out[40]=

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
16

IGraph/M Documentation | 9

http://mathworld.wolfram.com/LCFNotation.html

The Pappus graph is [5, 7, -7, 7, -7, -5]3.

In[41]:= IGLCF{5, 7, -7, 7, -7, -5}, 3, GraphStyle "ThickEdge"
Out[41]=

The cuboctahedral graph is [4, 2]6.

In[42]:= IGLayoutKamadaKawai3D@IGLCF[{4, 2}, 6]
Out[42]=

IGChordalRing

In[43]:= ? IGChordalRing

IGChordalRing[n, w] gives an extended chordal ring on n vertices, based on the vector or matrix w.

IGChordalRing[n, w] constructs an extended chordal ring based on the offset specification vector or matrix w as

follows:

1. It creates a cycle graph (i.e. ring) on n vertices.

2. For each vertex i on the ring, it adds a chord to a vertex w〚imodp〛 steps ahead counter-clockwise on the ring.

3. If w is a matrix, the procedure is carried out for each row.

The number of vertices n must be an integer multiple of the number of columns in the matrix w.

The available options are:

10 | IGraph/M Documentation

◼DirectedEdges True creates a graph with directed edges.

◼SelfLoops False prevents the creation of self-loops.

◼MultiEgdes False prevents the creation of multi-edges.

Create an extended chordal graph.

In[44]:= IGChordalRing15, {3, 4, 8}, GraphStyle "Business"

Out[44]=

Negative offsets are allowed.

In[45]:= IGChordalRing[15, {{3, 4, 8}, {-3, -4, -8}}]
Out[45]=

IGraph/M Documentation | 11

IGChordalGraph may create self-loops or multi-edges. This can be prevented by setting the SelfLoops or
MultiEdges options to False.

In[46]:= IGChordalRing15, {{3, 4, 8}, {-3, -4, -8}}, MultiEdges False

Out[46]=

Create a chordal graph with directed edges.

In[47]:= IGChordalRing8, {2, 3}, DirectedEdges True, GraphStyle "DiagramGold"

Out[47]=

1

2

3

4

5

6

7

8

12 | IGraph/M Documentation

Colour the chords of the ring based on which entry of the w vector they correspond to.

In[48]:= w = {2, 3, 4};

IGChordalRing12, w, GraphStyle "ThickEdge", EdgeStyle Opacity[1 / 2] // IGEdgeMap

ColorData[97],

EdgeStyle Functiong,

TableIfi ≤ VertexCount[g], 0, Modi, Length[w], 1, i, EdgeCount[g]

Out[49]=

IGSquareLattice

In[50]:= ? IGSquareLattice

IGSquareLattice[{d1, d2,…}] generates a square grid graph of the given dimensions.

IGSquareLattice[{d1, d2, …}] creates a square lattice graph of the given dimensions. The available options are:

◼"Radius" controls the size of the neighbourhood within which vertices will be connected.

◼"Periodic" True creates a periodic lattice.

◼"Mutual" True inserts directed edges in both directions when DirectedEdges True is used.

In previous versions, IGSquareLattice was called IGMakeLattice. This name can still be used as a synonym for
the sake of backwards compatibility, however, it will be removed in a future version.

To create other types of lattices, see IGTriangleLattice and IGLatticeMesh.

In[51]:= IGSquareLattice{3, 4}, GraphStyle "VintageDiagram"

Out[51]=

1

2

3

4

5

6

7

8

9

10

11

12

IGraph/M Documentation | 13

In[52]:= IGSquareLattice{10, 10}, "Periodic" True
Out[52]=

In[53]:= Graph3D@IGSquareLattice[{5, 4, 3}, GraphStyle "Prototype"]
Out[53]=

In[54]:= Graph3D@IGSquareLattice{2, 5}, DirectedEdges True, "Periodic" True, PlotTheme "NeonColor"
Out[54]=

14 | IGraph/M Documentation

IGTriangularLattice

In[55]:= ? IGTriangularLattice

IGTriangularLattice [n] generates a triangular lattice graph on a size n equilateral triangle using n(n+1)/2 vertices.
IGTriangularLattice [{m, n}] generates a triangular lattice graph on anm by n rectangle.

IGTriangularLattice can create a triangular grid graph in the shape of a triangle or a rectangle. To generate other

types of lattices, see IGSquareLattice and IGLatticeMesh.

The available options are:

◼DirectedEdges True creates a directed graph.

◼"Periodic" True creates a periodic lattice.

Generate a triangular lattice on an equilateral triangle with 6 vertices along each of its edges.

In[56]:= IGTriangularLattice[6, GraphStyle "SmallNetwork"]
Out[56]=

1

2 3

4 5 6

7 8 9 10

11 12 13 14 15

16 17 18 19 20 21

Create a directed triangle lattice on a rectangle. Notice the vertex labelling and that the arrows are oriented from smaller
index vertices to larger index ones, making this an acyclic graph.

In[57]:= IGTriangularLattice{4, 4}, DirectedEdges True,

VertexShapeFunction "Name", PerformanceGoal "Quality"
Out[57]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

IGraph/M Documentation | 15

Create a triangle lattice and colour its vertices.

In[58]:= IGTriangularLattice{8, 6}, VertexSize Large, EdgeStyle Gray //

IGVertexMapColorData[98], VertexStyle IGMinimumVertexColoring
Out[58]=

Take a hexagonal subgraph of a triangle lattice.

In[59]:= g = IGTriangularLattice[13];

center = First@GraphCenter[g];

VertexDeleteg,

ComplementVertexList[g], AdjacencyList[g, center, 4], {center}

Out[61]=

16 | IGraph/M Documentation

Create a periodic (i.e. toroidal topology) triangle lattice.

In[62]:= Graph3D@IGTriangularLattice{24, 8}, "Periodic" True
Out[62]=

IGKaryTree

In[63]:= ? IGKaryTree

IGKaryTree[n] gives a binary tree with n vertices.
IGKaryTree[n, k] gives a k-ary tree with n vertices.

The available options are:

◼DirectedEdges True creates a directed tree.

In[64]:= IGKaryTree[15]
Out[64]=

In[65]:= IGKaryTree10, 3, DirectedEdges True

Out[65]=

IGSymmetricTree

In[66]:= ? IGSymmetricTree

IGSymmetricTree [{k1, k2,…}] gives a tree where vertices in the (i+1)st layer have k_i children.

IGSymmetricTree creates a tree where successive layers (i.e. vertices at the same distance from the root) have the

specified number of children.

IGraph/M Documentation | 17

Create a tree where the root has 4 children, its children have 3 children, and so on.

In[67]:= IGSymmetricTree[{4, 3, 2, 1}]
Out[67]=

Create a directed tree.

In[68]:= IGSymmetricTree{4, 2}, DirectedEdges True

Out[68]=

IGSymmetricTree is guaranteed to label vertices in breadth-first order. Deeper layers have higher integer labels.

In[69]:= IGSymmetricTree{3, 3}, GraphStyle "DiagramBlue"

Out[69]=

1

2

3

4

5

6

7

8

9

10

11

12

13

18 | IGraph/M Documentation

IGBetheLattice

In[70]:= ? IGBetheLattice

IGBetheLattice[n] gives the first n layers of a Bethe lattice with coordination number 3.
IGBetheLattice[n, k] gives the first n layers of a Bethe lattice with coordination number k.

A Bethe lattice, also called a regular tree, is an infinite tree in which all vertices have the same degree.
IGBetheLattice[n, k] computes the first n layers of such a tree. Each non-leaf vertex will have degree k. The

default degree is 3.

IGBetheLattice differs from CompleteKaryTree in that the degree of the root will be the same as the degree of
other non-lead nodes.

In[71]:= IGBetheLattice5, GraphStyle "Prototype", VertexSize Large
Out[71]=

Generate a tree where non-leaf nodes have total degree 5, and use directed edges.

In[72]:= IGBetheLattice5, 4, DirectedEdges True
Out[72]=

IGraph/M Documentation | 19

Colour vertices based on their distance from the root (i.e. the “layer” they are part of).

In[73]:= IGVertexMap

ColorData[68],

VertexStyle First@IGDistanceMatrix[#, {1}] &,

IGBetheLattice5, GraphStyle "BasicBlack", VertexSize 0.4

Out[73]=

Visualize the nested line graph of a degree-4 regular tree.

In[74]:= Graph3D@NestLineGraph, IGBetheLattice[5, 4], 2
Out[74]=

IGFromPrufer

In[75]:= ? IGFromPrufer

IGFromPrufer[sequence] constructs a tree from a Prüfer sequence.

20 | IGraph/M Documentation

A Prüfer sequence is a unique representation of an n-vertex labelled tree as n - 2 integers between 1 and n.

In[76]:= IGFromPrufer[{1, 1, 2, 2}, VertexLabels "Name"]
Out[76]=

1

2 3 4

5 6

Use IGToPrufer to convert a tree back to its Prüfer sequence.

In[77]:= IGToPrufer[%]
Out[77]=

{1, 1, 2, 2}

Generate all labelled trees on 4 nodes:

In[78]:= IGFromPrufer[#, VertexLabels "Name"] & /@ Tuples[Range[4], {2}]
Out[78]=

1

2 3 4

, 12 34 , 12 3 4, 12 34 ,

1 2 34 ,

1

2

3 4

, 1 2 3 4, 1 2 34 ,

1 234 , 1 23 4,

1 2

3

4

, 1 23 4 ,

1 23 4 , 1 2 34 , 1 234 ,

1 2 3

4

Of these, only two are non-isomorphic.

In[79]:= DeleteDuplicatesCanonicalGraph /@ %

Out[79]=

 ,

IGraph/M Documentation | 21

IGExpressionTree

In[80]:= ? IGExpressionTree

IGExpressionTree [expression] constructs a tree graph from an arbitrary Mathematica expression.

IGExpressionTree constructs the tree graph corresponding to an arbitrary Mathematica expression. The vertices of
the tree will be the positions of the corresponding subexpressions.

IGExpressionTree takes all standard Graph options. The VertexLabels option takes the following special values:

◼VertexLabels "Head" labels branch vertices with the Head of the corresponding subexpression and leaf
vertices with the corresponding atomic expression.

◼VertexLabels "Subexpression" labels vertices with the corresponding subexpression.

◼VertexLabels "Name" labels vertices with their name, i.e. the position of the corresponding subexpression.

◼VertexLabels None uses no labels.

IGExpressionTree constructs a graph corresponding to the structure of a Mathematica expression.

In[81]:= tree = IGExpressionTree[expr = 1 + x^2]
Out[81]=

1

x 2

Power

Plus

22 | IGraph/M Documentation

The expression tree is similar to what TreeForm displays, but unlike TreeForm’s output, it is a Graph object that
works with all graph functions.

In[82]:= TreeForm[expr]
Out[82]//TreeForm=

Plus

1 Power

x 2

The vertex names are the position specifications of the corresponding subexpressions.

In[83]:= VertexList[tree]
Out[83]=

{{1}, {2, 1}, {2, 2}, {2}, {}}

In[84]:= Extract[expr, %]

Out[84]=

1, x, 2, x2, 1 + x2

Place the vertex labels in the centre and construct an undirected graph.

In[85]:= IGExpressionTreex^2 + y^2,

GraphStyle "DiagramGold",

VertexLabels Placed["Head", Center], VertexSize Large

Out[85]=

x 2

Power

y 2

Power

Plus

IGraph/M Documentation | 23

Create an undirected graph, labelled with subexpressions.

In[86]:= IGExpressionTreeNormalSin[x] + O[x]^5, DirectedEdges False,

VertexLabels "Subexpression"
Out[86]=

x

-
1

6

x 3

x3

-
x3

6

x -
x3

6

Certain trees are easier to construct through their corresponding nested expression.

In[87]:= IGExpressionTree[#, VertexLabels "Index"] & /@ Groupings[5, 3]
Out[87]=

1 2 3

4

5 6

7

,
1

2 3 4

5
6

7

,
1 2

3 4 5

6

7

24 | IGraph/M Documentation

An equivalent of IGSymmetricTree can be easily implemented using IGExpressionTree.

In[88]:= IGExpressionTreeConstantArray[1, {3, 4, 5}], VertexLabels None, GraphLayout "RadialEmbedding"
Out[88]=

Define a tree through a substitution system.

In[89]:= IGExpressionTree

Nest[ReplaceAll[{0 {0, 1}, 1 {0}}], {0, 1}, 3],

VertexLabels None, GraphStyle "VibrantColor"

Out[89]=

IGraph/M Documentation | 25

To format each node so that it fits a label, it is necessary to set an explicit VertexShapeFunction.

In[90]:= IGExpressionTreeFirst@Roots[x^2 + a x + 1 0, x],

VertexLabels "Subexpression",

PerformanceGoal "Quality",

ImageSize 280

 //

IGVertexMap

Function[e, Inset[Panel[e], #1] &],

VertexShapeFunction IGVertexProp[VertexLabels]

 // RemoveProperty[#, VertexLabels] &

Out[90]=

x

1

2

-1 a

-a

-1

-4

a 2

a2

a2 -4
1

2

a2 -4

- a2 -4

- a2 -4 -a

1

2
- a2 -4 -a

x
1

2
- a2 -4 -a

IGCompleteGraph

In[91]:= ? IGCompleteGraph

IGCompleteGraph[n] gives a complete graph on n vertices.
IGCompleteGraph[vertices] gives a complete graph on the given vertices.

The available options are:

◼DirectedEdges True creates a directed graph.

◼SelfLoops True includes self-loops.

26 | IGraph/M Documentation

Create an undirected complete graph with loops.

In[92]:= IGCompleteGraph5, SelfLoops True
Out[92]=

Create a directed complete graph with loops.

In[93]:= IGCompleteGraph6, SelfLoops True, DirectedEdges True
Out[93]=

Create a list of complete graphs starting with the null graph.

In[94]:= IGCompleteGraph /@ Range[0, 3]
Out[94]=

 , , ,

IGraph/M Documentation | 27

Create a complete graph on the given vertices.

In[95]:= IGCompleteGraph{"a", "b", "c", "d"}, GraphStyle "DiagramBlue"
Out[95]=

a

b

c

d

IGCompleteAcyclicGraph

In[96]:= ? IGCompleteAcyclicGraph

IGCompleteAcyclicGraph[n] gives a complete acyclic directed graph on n vertices.
IGCompleteAcyclicGraph[vertices] gives a complete acyclic directed graph on the given vertices.

Create a complete acyclic directed graph on 5 vertices.

In[97]:= IGCompleteAcyclicGraph[5]
Out[97]=

28 | IGraph/M Documentation

Create a complete acyclic graph on the given vertices. The directed edges always run from vertices that appear earlier in

the list to those that appear later.

In[98]:= IGCompleteAcyclicGraphCharacterRange"a", "f", GraphStyle "DiagramGold"

Out[98]=

f

e

d

c

b

a

IGKautzGraph

In[99]:= ? IGKautzGraph

IGKautzGraph[m, n] gives a Kautz graph onm+1 characters with string length n+1.

The vertices of the Kautz graph Km
n

 are strings of length n + 1, composed of m + 1 distinct symbols, with the restriction that
two adjacent symbols in the string may not be the same. A vertex s1 s2…sn sn+1 connects to all other vertices of the form

s2…sn+1 x, where x can be any symbol distinct from sn+1.

The Kautz graph Km
n

 has (m + 1)mn
 vertices, with each vertex having in-degree and out-degree m. Therefore, it has

(m + 1)mn+1
 edges.

In[100]:=

VertexCount@IGKautzGraph[3, 2] (3 + 1) * 3^2
Out[100]=

True

In[101]:=

VertexOutDegree@IGKautzGraph[3, 2]
Out[101]=

{3, 3}

The line graph of Kautz graph Km
n

 is Km
n+1.

In[102]:=

IGIsomorphicQ

LineGraph@IGKautzGraph[2, 2],

IGKautzGraph[2, 3]

Out[102]=

True

IGraph/M Documentation | 29

Visualize the Kautz graph K2
3
 on 3 characters with string length 4 in three dimensions.

In[103]:=

Graph3D@IGKautzGraph[2, 3]
Out[103]=

Label the vertices of the Kautz graph on 3 characters with string length 2.
In[104]:=

labels = StringJoin /@ DeleteCases[Tuples[{"A", "B", "C"}, {2}], {c_, c_}];

IGKautzGraph2, 1,

VertexLabels Thread[Range[6] (Placed[#, Center] &) /@ labels],

VertexSize Large, VertexShapeFunction "Capsule", PerformanceGoal "Quality",

PlotTheme "CoolColor", VertexLabelStyle White

Out[105]=

AB

AC

BA

BC

CA

CB

IGDeBruijnGraph
In[106]:=

? IGDeBruijnGraph

IGDeBruijnGraph[m, n] gives a De Bruijn graph onm characters and string length n.

30 | IGraph/M Documentation

In[107]:=

IGDeBruijnGraph3, 2, GraphStyle "BackgroundBlue", EdgeStyle Thick

Out[107]=

IGRealizeDegreeSequence
In[108]:=

? IGRealizeDegreeSequence

IGRealizeDegreeSequence [degrees] gives an undirected graph having the
given degree sequence. Available Method options: {"SmallestFirst", "LargestFirst", "Index"}.

IGRealizeDegreeSequence [indegrees, outdegrees] gives a directed graph having the given out- and in-degree sequences.

This function constructs an undirected graph with the given degree sequence, or a directed graph with the given in- and

out-degree sequences. For constructing simple graphs, it uses the Havel–Hakimi algorithm (undirected case) or Kleitman–
Wang algorithm (directed case). These algorithms work by selecting a “hub” vertex, and connecting up all its free (out-)de-
grees to other vertices with the largest degrees. In the directed case, the “largest” degrees are determined by lexico-
graphic ordering of (in, out)-degree pairs. For constructing a loop-free multigraph, a similar algorithm is used, but the hub

is connected to only one other vertex in each step, instead of to as many as its degree. If self-loops are allowed as well, the

same algorithm is used, and if a loop-free result cannot be created, an appropriate number of self-loops will be added to

the very last hub. The order in which hub vertices are selected is controlled by the Method option.

To randomly sample multiple realizations of a degree sequence, use IGDegreeSequenceGame, or first create a single

graph with IGRealizeDegreeSequence, then randomly rewire it using IGRewire.

The available options are:

◼SelfLoops True allows creating self-loops (disallowed by default).

◼MultiEdges True allows creating multi-edges (disallowed by default).

◼ The Method option controls the order in which hub vertices are chosen.

Available Method option values:

◼"SmallestFirst" will choose a smallest-degree vertex in each step of the algorithm (this is the default). This results

in a disassortative network. In the undirected case, this method is guaranteed to construct a connected graph, if one

exists, both when constructing simple graphs or multigraphs. See Horvát and Modes (2020), as well as

http://szhorvat.net/pelican/hh-connected-graphs.html for the proof. In the directed case, it tends to construct weakly-
connected graphs, but this is not guaranteed.

◼"LargestFirst" will choose a largest-degree vertex. This results in an assortative network. This method tends to

construct disconnected graphs. This is the most common variant of the Havel–Hakimi algorithm implemented in other
packages.

IGraph/M Documentation | 31

https://arxiv.org/abs/2009.03747
http://szhorvat.net/pelican/hh-connected-graphs.html

◼"Index" will choose vertices in the order of their indices.
In[109]:=

degseq = VertexDegree@IGGiantComponent@RandomGraph[{50, 50}]
Out[109]=

{3, 4, 4, 4, 2, 1, 2, 3, 3, 1, 2, 3, 2, 3, 1, 5,

2, 4, 3, 1, 2, 5, 4, 3, 1, 3, 2, 1, 2, 2, 3, 1, 3, 1, 1, 1, 1, 1}

The default Method "SmallestFirst" tends to create highly disassortative graphs. The result is guaranteed to be

connected if the input degree sequence was potentially connected.
In[110]:=

IGRealizeDegreeSequence[degseq]
Out[110]=

In[111]:=

N@GraphAssortativity[%]
Out[111]=

-0.524347

Method "LargestFirst" tends to create highly assortative disconnected graphs.

In[112]:=

IGRealizeDegreeSequencedegseq, Method "LargestFirst"

Out[112]=

In[113]:=

N@GraphAssortativity[%]
Out[113]=

0.904728

32 | IGraph/M Documentation

Allow parallel edges.
In[114]:=

IGRealizeDegreeSequencedegseq, MultiEdges True, Method # & /@

"SmallestFirst", "LargestFirst", "Index"

Out[114]=

 , ,

Create a directed graph.
In[115]:=

g = IGBarabasiAlbertGame[50, 1]
Out[115]=

In[116]:=

indegseq = VertexInDegree[g];

outdegseq = VertexOutDegree[g];

In[118]:=

IGRealizeDegreeSequenceoutdegseq, indegseq

Out[118]=

Verify that the degrees sequences of the result match the input to the function.
In[119]:=

VertexOutDegree[%] outdegseq, VertexInDegree[%] indegseq

Out[119]=

{False, False}

References

◼ S. L. Hakimi, On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph, Journal of the Society for
Industrial and Applied Mathematics 10, 3 (1962). http://eudml.org/doc/19050

◼ V. Havel, Poznámka O Existenci Konečných Grafů (A Remark on the Existence of Finite Graphs), Časopis Pro Pěstování
Matematiky 80, 4 (1955). https://www.jstor.org/stable/2098746

◼D. J. Kleitman and D. L. Wang, Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors,
Discrete Mathematics 6, 1 (1973). https://doi.org/10.1016/0012-365X(73)90037-X

◼ Sz. Horvát and C. D. Modes, Connectivity matters: Construction and exact random sampling of connected graphs

(2020). https://arxiv.org/abs/2009.03747

IGraph/M Documentation | 33

http://eudml.org/doc/19050
https://www.jstor.org/stable/2098746
https://doi.org/10.1016/0012-365X(73)90037-X
https://arxiv.org/abs/2009.03747

IGGraphAtlas
In[120]:=

? IGGraphAtlas

IGGraphAtlas[n] gives graph number n from An Atlas of Graphs by Ronald
C. Read and Robin J. Wilson, Oxford University Press, 1998. This function is provided for
convenience; if you are looking for a specific named graph, use the builtin GraphData function.

This function is provided for convenience for those who have the book An Atlas of Graphs by Ronald C. Read and Robin J.
Wilson, and for those who wish to replicate results obtained with other packages that include this database. For all other
purposes, use Mathematica’s built-in GraphData function.

Retrieve graph number 789:
In[121]:=

IGGraphAtlas[789]
Out[121]=

IGFamousGraph
In[122]:=

? IGFamousGraph

IGFamousGraph[name] returns the given graph from igraph's built-in database.

This function returns various “named” graphs from the igraph C library’s built-in database. It is included in IGraph/M for
compatibility with other igraph interfaces. It is recommended to use Mathematica’s built-in GraphData function

instead. See the documentation of the igraph C library for the list of supported graph names.

Create Krackhardt’s kite graph:
In[123]:=

g = IGFamousGraph"Krackhardt_Kite"

Out[123]=

34 | IGraph/M Documentation

Krackhardt’s kite was devised to illustrate the difference between various centrality measures:
In[124]:=

#[g] & /@

IGVertexMap0.1 # &, VertexSize IGBetweenness,

IGVertexMap# &, VertexSize IGCloseness,

IGVertexMap# &, VertexSize IGHarmonicCentrality,

IGVertexMap0.1 # &, VertexSize VertexDegree

Out[124]=

 , , ,

IGFromNauty
In[125]:=

? IGFromNauty

IGFromNauty[string] interprets a Graph6, Digraph6 or Sparse6 string representation of a graph.

IGFromNauty converts a Graph6, Digraph6 or Sparse6 string to a graph. These formats originate with the nauty suite of
programs and are supported by many other graph theory software.

Interpret a Graph6 string.
In[126]:=

IGFromNauty"Gr`HOk"

Out[126]=

IGraph/M Documentation | 35

http://pallini.di.uniroma1.it/
http://pallini.di.uniroma1.it/

Interpret a Sparse6 string. These start with a : character.
In[127]:=

IGFromNauty":I`ESgTlVF"

Out[127]=

Interpret a Digraph6 string. These start with a & character.
In[128]:=

IGFromNauty["&FKB?oMB_W?"]
Out[128]=

IGFromNauty does not support headers or whitespace in the string. To handle these, or to interpret a multiline string,
use IGImportString[…, "Nauty"].

In[129]:=

IGFromNauty[">>graph6<<DYw"]

IGraphM: Illegal character in Graph6, Digraph6 or Sparse6 line.

Out[129]=

$Failed

36 | IGraph/M Documentation

In[130]:=

IGImportString[

">>graph6<<DYw

Dhs

Dxo

DVW

", "Nauty"]
Out[130]=

 , , ,

Random graph generators

These graph creation functions use igraph’s random graph generator, which can be seeded using IGSeedRandom.
In[131]:=

? IG*Game*

IGraphM`

IGAsymmetricPreferenceGame IGErdosRenyiGameGNP IGStaticFitnessGame

IGBarabasiAlbertGame IGEstablishmentGame IGStaticPowerLawGame

IGBipartiteGameGNM IGForestFireGame IGStochasticBlockModelGame

IGBipartiteGameGNP IGGeometricGame IGTreeGame

IGCallawayTraitsGame IGGrowingGame IGWattsStrogatzGame

IGDegreeSequenceGame IGKRegularGame

IGErdosRenyiGameGNM IGPreferenceGame

Basic random graphs
In[132]:=

? IGErdosRenyiGameGNM

IGErdosRenyiGameGNM[n, m] generates a random graph with n vertices andm edges.

In[133]:=

? IGErdosRenyiGameGNP

IGErdosRenyiGameGNP[n, p] generates a random graph on n vertices, in which each edge is present with probability p.

IGErdosRenyiGameGNM uniformly samples graphs with n vertices and m edges. This random graph model is known as

the Erdős–Rényi G(n,m) model.

In IGErdosRenyiGameGNP, each edge is present with the same and independent probability. This model is known as

the Erdős–Rényi G(n, p) model or Gilbert model.

The available options are:

◼DirectedEdges True produces a directed graph.

◼SelfLoops True allows self-loops.

IGraph/M Documentation | 37

Create a random graph with 10 vertices and 20 edges.
In[134]:=

IGErdosRenyiGameGNM10, 20, GraphStyle "VintageDiagram"

Out[134]=

1

2

3

4

5

6

7

8

9

10

Create a directed graph and allow self-loops.
In[135]:=

IGErdosRenyiGameGNM10, 35, DirectedEdges True, SelfLoops True

Out[135]=

Insert each edge with a probability of 20%.
In[136]:=

IGErdosRenyiGameGNP[20, 0.2, GraphStyle "RoyalColor"]
Out[136]=

38 | IGraph/M Documentation

The G(n, p) model produces connected graphs with high probability for p > ln(n) /n.
In[137]:=

n = 300;

ListPlot

Table

p, Mean@Boole@TableConnectedGraphQ@IGErdosRenyiGameGNP[n, p], {50},

{p, 0, 0.05, 0.0005}

,

GridLines {{Log[n] / n}, None}

Out[138]=

0.01 0.02 0.03 0.04 0.05

0.2

0.4

0.6

0.8

1.0

Random bipartite graphs
In[139]:=

? IGBipartiteGameGNM

IGBipartiteGameGNM[n1, n2, m] generates a bipartite random graph with n1 and n2 vertices in the two partitions andm edges.

In[140]:=

? IGBipartiteGameGNP

IGBipartiteGameGNP[n1, n2, p] generates a bipartite Bernoulli
random graph with n1 and n2 vertices in the two partitions and connection probability p.

IGBipartiteGameGNM and IGBipartiteGameGNP are equivalent to IGErdosRenyiGNM and

IGErdosRenyiGNP, but they generate bipartite graphs.

The available options are:

◼DirectedEdges True creates a directed graph.

◼"Bidirectional" True allows directed edges to run in either direction between the two partitions. The default
is False, which means that edges will run only from the first partition to the second. This option is ignored for
undirected graphs.

IGraph/M Documentation | 39

In[141]:=

IGBipartiteGameGNP[5, 5, 0.5, VertexLabels "Name"]
Out[141]=

1

2

3

4

5

6

7

8

9

10

Create a bipartite directed graph with edges running either uni-directionally or bidirectionally between the two partitions.
In[142]:=

IGLayoutBipartite@IGBipartiteGameGNM10, 10, 30, DirectedEdges True, "Bidirectional" # & /@

{False, True}
Out[142]=

 ,

IGTreeGame
In[143]:=

? IGTreeGame

IGTreeGame[n] generates a random tree on n vertices. Sampling is uniform over
the set of labelled trees. Available Method options: {"PruferCode", "LoopErasedRandomWalk"}.

IGTreeGame samples uniformly from the set of labelled trees.

Available options:

◼DirectedEdges True will create a directed tree, with edges oriented away from the root.

◼Method can be used to choose the tree generation algorithm. All methods sample labelled trees uniformly.

Available Method options:

◼"PruferCode", works by generating a random Prüfer sequence, then constructing a tree from it. It does not
currently support directed trees.

◼"LoopErasedRandomWalk", uses a loop-erased random walk to uniformly sample the spanning trees of the

complete graph.

40 | IGraph/M Documentation

In[144]:=

IGTreeGame250, GraphLayout "LayeredEmbedding", PlotTheme "PastelColor"

Out[144]=

There are several distinct labellings of isomorphic trees. All of these are generated with equal probability.
In[145]:=

Table

IGTreeGame3, VertexLabels Automatic,

{100}

 // DeleteDuplicatesByAdjacencyMatrix
Out[145]=

 1 23 , 1 2 3, 12 3

Generate directed trees.
In[146]:=

TableIGTreeGame6, DirectedEdges True, GraphLayout "LayeredDigraphEmbedding", {5}
Out[146]=

 , , , ,

Generate a random sparse connected graph by first creating a tree, then adding cycle edges. Note that this method does

not sample connected graphs uniformly.
In[147]:=

randomConnected[nodeCount_, edgeCount_] :=

Module{tree},

tree = IGTreeGame[nodeCount];

EdgeAddtree, RandomSampleEdgeList@GraphComplement[tree], edgeCount - nodeCount + 1

IGraph/M Documentation | 41

In[148]:=

randomConnected[100, 120]
Out[148]=

Colour the nodes of a random tree by their inverse average distance to other nodes.
In[149]:=

IGVertexMap

ColorData["SolarColors"],

VertexStyle Rescale@*IGCloseness,

IGTreeGame1000, Background Black, ImageSize Large, EdgeStyle LightGray

Out[149]=

IGDegreeSequenceGame
In[150]:=

? IGDegreeSequenceGame

IGDegreeSequenceGame[degrees] generates an undirected random graph with the given degree sequence. Available
Method options: {"ConfigurationModel", "ConfigurationModelSimple", "FastSimple", "VigerLatapy"}.

IGDegreeSequenceGame[indegrees, outdegrees]
generates a directed random graph with the given in- and out-degree sequences.

IGDegreeSequenceGame implements various random sampling methods for graphs with a given degree sequence. To

quickly construct a single realization of a degree sequence, use IGRealizeDegreeSequence.

42 | IGraph/M Documentation

IGDegreeSequenceGame takes the following values for its Method option:

◼"ConfigurationModel" implements the configuration model: it connects up vertex stubs randomly. It may

generate both self-loops and multi-edges. Undirected graphs are generated with probability proportional to

∏i<j Aij !∏i Aii !!
-1, where A is the adjacency matrix, having twice the number of loops for each vertex on the diagonal.

Directed ones are generated with probability proportional to ∏i,j Aij !
-1.

All simple graphs are generated with the same probability, but the probability of multigraphs and graphs with self-
loops differs from that of simple graphs and depends on their specific structure.

◼"ConfigurationModelSimple" also implements the configuration model, but it rejects non-simple graphs. It
samples uniformly from the set of all simple graphs with the given degree sequence. This method can be very slow for
dense graphs.

◼"FastSimple" is a fast generation algorithm that avoids self-loops and multi-edges. This method can generate any

simple graph with the given degree sequence, but it does not sample them uniformly.

◼"VigerLatapy" can sample undirected, connected simple graphs uniformly and uses Monte-Carlo methods to

randomize the graphs. This generator should be favoured if undirected and connected graphs are to be generated and

execution time is not a concern. igraph uses the original implementation of Fabien Viger; see https://www-
complexnetworks.lip6.fr/~latapy/FV/generation.html and the corresponding paper at https://arxiv.org/abs/cs/0502085.

The default method is "FastSimple". Note that it does not sample uniformly.
In[151]:=

degseq = VertexDegree@RandomGraph[{50, 100}];

In[152]:=

IGDegreeSequenceGamedegseq, Method "ConfigurationModel"

Out[152]=

In[153]:=

SimpleGraphQ[%]
Out[153]=

False

In[154]:=

IGDegreeSequenceGamedegseq, Method "ConfigurationModelSimple"

Out[154]=

IGraph/M Documentation | 43

https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html
https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html
https://arxiv.org/abs/cs/0502085

In[155]:=

SimpleGraphQ[%]
Out[155]=

True

The configuration model algorithm is too slow to construct even small dense graphs.
In[156]:=

ds = VertexDegree@RandomGraph10, Binomial[10, 2] - 5
Out[156]=

{9, 7, 7, 9, 9, 8, 8, 7, 8, 8}

In[157]:=

TimeConstrainedIGDegreeSequenceGameds, Method "ConfigurationModelSimple", 1
Out[157]=

$Aborted

Graphs that are almost complete can be sampled by generating the complement first.
In[159]:=

GraphComplement@IGDegreeSequenceGame9 - ds, Method "ConfigurationModelSimple"

Out[159]=

In[160]:=

ds VertexDegree[%]
Out[160]=

True

IGKRegularGame
In[161]:=

? IGKRegularGame

IGKRegularGame[n, k] generates a k-regular graph on n vertices, i.e. a graph in which all vertices have degree k.

In a k-regular graph all vertices have degree k. The current implementation is able to generate any k-regular graph, but it
does not sample them with precisely the same probability.

The available options are:

◼DirectedEdges True creates a directed graph.

◼MultiEdges True allows the creation of parallel edges.

In[162]:=

IGKRegularGame[10, 3]
Out[162]=

44 | IGraph/M Documentation

Not all parameters are valid:
In[163]:=

IGKRegularGame[5, 3]

IGraphM: src/games/degree_sequence.c:151 - No simple undirected graph can realize the given degree sequence.

IGraphM: igraph returned with error: Invalid value.

Out[163]=

$Failed

There are no graphs with 5 vertices each having degree 3.
In[164]:=

IGGraphicalQ[{3, 3, 3, 3, 3}]
Out[164]=

False

IGGrowingGame
In[165]:=

? IGGrowingGame

IGGrowingGame[n, k] generates a growing random graph with n vertices, adding a new vertex and k new edges in each step.

IGGrowingGame[n, k] creates a random graph by successively adding vertices to the graph until the vertex count n is

reached. At each step, k new edges are added as well.

The available options are:

◼DirectedEdges True creates a directed graph.

◼"Citation" True connects newly added edges to the newly added vertex.
In[166]:=

IGGrowingGame[50, 2]
Out[166]=

IGraph/M Documentation | 45

With "Citation" True, the newly added edges are connected to the newly added vertices.
In[167]:=

IGGrowingGame50, 1, "Citation" True

Out[167]=

Note that while this model can be used to generate random trees, it will not sample them uniformly. If uniform sampling

is desired, use IGTreeGame instead.

Create a directed citation graph.
In[168]:=

IGGrowingGame20, 2, DirectedEdges True, "Citation" True, GraphStyle "Web"
Out[168]=

IGBarabasiAlbertGame
In[169]:=

? IGBarabasiAlbertGame

IGBarabasiAlbertGame[n, k] generates an n-vertex Barabási–Albert random graph by adding a new vertex
with k (out-)edges in each step. Available Method options: {"Bag", "PSumTree", "PSumTreeMultiple"}.

IGBarabasiAlbertGame[n, {k2, k3,…}] generates an n-vertex
Barabási–Albert random graph by adding a new vertex with k2, k3,… out-edges in each step.

IGBarabasiAlbertGame[n, k, {β, A}] generates a Barabási–Albert random graph with
preferential attachment probabilities proportional to d^β + A where d is the vertex (in-)degree.

IGBarabasiAlbertGame implements a preferential attachment model. It generates a graph by sequentially adding

new vertices with the specified number of edges (k). The edges will connect to existing vertices with probability dβ + A,
where d is the in-degree of the existing vertex. The default parameters are β = 1 and A = 1.

The available options are:

◼DirectedEdges False creates an undirected graph.

46 | IGraph/M Documentation

◼"TotalDegreeAttraction" True computes the attachment probability based on the the total degree of
existing vertices (i.e. the sum of in- and out-degrees), not their in-degree. Always assumed to be True when using

DirectedEdges True.

◼"StartingGraph" g will use graph g as the starting point for building the preferential attachment graph. The

vertex names of g are ignored; the result always uses positive integers as vertex names.

Available Method option values:

◼"Bag" works by putting the IDs of the vertices into a bag exactly as many times as their (in-)degree, plus once more.
Then the required number of cited vertices are drawn from the bag, with replacement. This method might generate

multi-edges. It only works if β = 1 and A = 1.

◼"PSumTree" uses a partial prefix-sum tree to generate the graph. It does not generate multi-edges and works for any

β and A values.

◼"PSumTreeMultiple" works like "PSumTree" but allows multi-edges.

The built-in BarabasiAlbertGraphDistribution is equivalent to using A = 0 and DirectedEdges False in

IGBarabasiAlbertGame, while the built-in PriceGraphDistribution is equivalent DirectedEdges True.

In[170]:=

IGBarabasiAlbertGame[100, 1]
Out[170]=

Use attachment probability proportional to degree1.5 + 1.

In[171]:=

IGBarabasiAlbertGame[100, 2, {1.5, 1}]
Out[171]=

IGraph/M Documentation | 47

The "Bag" method may generate parallel edges:

In[172]:=

IGBarabasiAlbertGame[100, 2, Method "Bag"]
Out[172]=

In[173]:=

MultigraphQ[%]
Out[173]=

True

Create a graph with the given out-degree sequence. The kth entry in the degree sequence list must be no greater than k.
In[174]:=

IGBarabasiAlbertGame12, {1, 2, 3, 2, 1, 3, 4, 5, 1, 5, 2}, PlotTheme "Minimal"

Out[174]=

In[175]:=

VertexOutDegree[%]
Out[175]=

{0, 1, 2, 3, 2, 1, 3, 4, 5, 1, 5, 2}

Create a preferential attachment graph using a 4-node complete graph as the starting point.
In[176]:=

IGBarabasiAlbertGame10, 1, "StartingGraph" CompleteGraph[4]

Out[176]=

48 | IGraph/M Documentation

IGWattsStrogatzGame
In[177]:=

? IGWattsStrogatzGame

IGWattsStrogatzGame [n, p] generates an n-vertex Watts–Strogatz random graph using rewiring probability p.
IGWattsStrogatzGame [n, p, k] rewires a lattice where each vertex is connected to its k-neighbourhood.
IGWattsStrogatzGame [n, p, {dim, k}] rewires a dim dimensional

lattice of n^dim vertices, where each vertex is connected to its k-neighbourhood.

The two-argument form produces results equivalent to that of the built-in WattsStrogatzGraphDistribution.

In[178]:=

IGWattsStrogatzGame[30, 0.05, PlotTheme "Web"]
Out[178]=

The extended form allows for multi-dimensional lattices. Create a graph by randomly rewiring a two-dimensional toroidal
lattice of 10×10 nodes:

In[179]:=

Graph3D@IGWattsStrogatzGame[10, 0.01, {2, 1}]
Out[179]=

IGStaticFitnessGame
In[180]:=

? IGStaticFitnessGame

IGStaticFitnessGame[m, {f1, f2,…}] generates a random undirected
graph with m edges where edge i <-> j is inserted with probability proportional to f_i×f_j.

IGStaticFitnessGame[m, {fout1, fout2,…}, {fin1, fin2,…}] generates a random directed
graph with m edges where edge i -> j is inserted with probability proportional to fout_i×fin_j.

IGStaticFitnessGame generates a random graph by connecting vertices based on their fitness score. The algorithm

starts with n vertices and no edges. Two vertices are selected with probabilities proportional to their fitness scores (for

IGraph/M Documentation | 49

directed graphs, a starting vertex is selected based on its out-fitness and an end vertex based on its in-fitness). If they are

not yet connected, an edge is inserted between them. The procedure is repeated until the number of edges reaches m.

The expected degree of each vertex is proportional to its fitness score. This is exactly true when self-loops and multi-
edges are allowed, and approximately true otherwise.

IGStaticFitnessGame approximates the Chung–Lu model in which each edge i j is present independently, with

probability

pij =

fi fj
2m

if i ≠ j
fi fj
4m

if i = j
,

where m =
1
2
∑k fk.

Unlike the Chung–Lu algorithm, which would require Om2 computation steps, IGStaticFitnessGame runs in O(m)

time.

The available options are:

◼SelfLoops True allows the creation of self-loops.

◼MultiEdges True allows the creation of parallel edges.

Create an undirected graph with four high-degree nodes and 40 low-degree ones.
In[181]:=

weights = Join[{10, 10, 10, 10}, ConstantArray[1, 40]];

IGStaticFitnessGameTotalweights 2, weights

Out[182]=

In[183]:=

VertexDegree[%]
Out[183]=

{5, 5, 12, 8, 2, 2, 1, 2, 2, 1, 1, 2, 2, 0, 2, 1, 2, 0, 0,

3, 1, 1, 0, 0, 1, 2, 0, 3, 0, 2, 1, 2, 1, 1, 1, 2, 0, 1, 2, 0, 0, 3, 2, 1}

Create a directed graph.
In[184]:=

IGStaticFitnessGame[30, Range[10], Range[10, 1, -1]]
Out[184]=

50 | IGraph/M Documentation

When self-loops and multi-edges are allowed, the expected degree of each vertex is proportional to its fitness score.
In[185]:=

degrees = {3, 3, 2, 2, 2, 1, 1};

Table

VertexDegree@IGStaticFitnessGame

Total[degrees] / 2, degrees,

SelfLoops True, MultiEdges True

,

{1000}

 // N // Mean

Out[186]=

{3.03, 2.97, 2.023, 1.957, 2.056, 0.977, 0.987}

When generating simple graphs, this holds only approximately.
In[187]:=

degrees = {3, 3, 2, 2, 2, 1, 1};

Table

VertexDegree@IGStaticFitnessGame[

Total[degrees] / 2, degrees

],

{1000}

 // N // Mean

Out[188]=

{2.703, 2.625, 2.04, 2.071, 2.086, 1.23, 1.245}

IGStaticPowerLawGame
In[189]:=

? IGStaticPowerLawGame

IGStaticPowerLawGame [n, m, exp] generates a random graph with n
vertices andm edges, having a power-law degree distribution with the given exponent.

IGStaticPowerLawGame [n, m, expOut, expIn] generates a random directed graph with n
vertices andm edges, having power-law in- and out-degree distributions with the given exponents.

IGStaticPowerLawGame generates a directed or undirected random graph where the degrees of vertices follow

power-law distributions with prescribed exponents. For directed graphs, the exponents of the in- and out-degree distribu-
tions may be specified separately.

This function is equivalent to IGStaticFitnessGame with a fitness vector f where fi = i-α and α =
1

exponent-1
.

Note that significant finite size effects may be observed for exponents smaller than 3 in the original formulation of the

game. This function removes the finite size effects by default by assuming that the fitness of vertex i is (i + i0)-α, where i0 is

a constant chosen appropriately to ensure that the maximum degree is less than the square root of the number of edges

times the average degree; see the paper of Chung and Lu, and Cho et al. for more details.

The available options are:

◼SelfLoops True allows the creation of self-loops.

◼MultiEdges True allows the creation of parallel edges.

◼"FiniteSizeCorrection" False disables finite size correction, which is used by default.

IGraph/M Documentation | 51

Create a graph with a power-law degree distribution of exponent 2.5.
In[190]:=

g = IGStaticPowerLawGame[100000, 200000, 2.5];

In[191]:=

Histogram[VertexDegree[g], "Log", {"Log", "PDF"}]
Out[191]=

2 5 10 20 50 100

10-5

10-4

0.001

0.010

0.100

1

Create a directed graph with power-law in- and out-degree distributions.
In[192]:=

IGStaticPowerLawGame[50, 150, 3, 3]
Out[192]=

References

◼Goh K-I, Kahng B, Kim D: Universal behaviour of load distribution in scale-free networks. Phys Rev Lett 87(27):278701,
2001.

◼ Chung F and Lu L: Connected components in a random graph with given degree sequences. Annals of Combinatorics 6,
125-145, 2002.

◼ Cho YS, Kim JS, Park J, Kahng B, Kim D: Percolation transitions in scale-free networks under the Achlioptas process.
Phys. Rev. Lett. 103:135702, 2009.

IGStochasticBlockModelGame
In[193]:=

? IGStochasticBlockModelGame

IGStochasticBlockModelGame[ratesMatrix, blockSizes] samples from a stochastic block model.

The ratesMatrix argument gives the connection probability between and within blocks (groups of vertices). The

blockSizes argument gives the size of each block (vertex group).

The available options are:

◼DirectedEdges True creates a directed graph.

◼SelfLoops True allows the creation of self-loops.

52 | IGraph/M Documentation

In[194]:=

IGStochasticBlockModelGame
0.9 0.1 0.2
0.1 1 0.05
0.2 0.05 0.9

, {6, 7, 8}

Out[194]=

In[195]:=

IGAdjacencyMatrixPlot[%]
Out[195]=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

IGPreferenceGame
In[196]:=

? IGPreferenceGame

IGPreferenceGame[n, typeWeights, preferenceMatrix]

Experimental: This is experimental functionality that may change without notice.

IGPreferenceGame[n, w, p] first samples n vertices of different types, each having type i with probability propor-
tional to wi. Then it connects vertices with types i and j with probability pij. This is similar to a stochastic block model, but

the vertex types are chosen randomly.

The available options are:

◼DirectedEdges True creates a directed graph.

◼SelfLoops True allows self-loops.

IGraph/M Documentation | 53

Generate a graph with three groups of vertices of different sizes, with intra-group connections being much more frequent
than inter-group ones.

In[197]:=

IGPreferenceGame60, {3, 6, 10}, 0.05 + 0.5 IdentityMatrix[3]

Out[197]=

Generate a directed graph with low-probability intra-group connections and high probability unidirectional inter-group
connections.

In[198]:=

IGPreferenceGame20, {0.3, 0.7},
0.05 0.3
0 0.05

, DirectedEdges True

Out[198]=

IGAsymmetricPreferenceGame
In[199]:=

? IGAsymmetricPreferenceGame

IGAsymmetricPreferenceGame[n, typeWeightsMatrix, preferenceMatrix]

Experimental: This is experimental functionality that may change without notice.

IGAsymmetricPreferenceGame[n, w, p] is similar to IGPreferenceGame[n, w, p], but it assigns a sepa-
rate out-type and in-types to each vertex. The probability of a vertex having out-type i and in-type j is proportional to wij.

The probability of connecting a vertex with out-type i to another one with in-type j is pij.

The available options are:

◼SelfLoops True allows self-loops.

54 | IGraph/M Documentation

In[200]:=

IGAsymmetricPreferenceGame50,
0 1
0 2

,
0.1 0.01
0.01 0.1

Out[200]=

IGForestFireGame
In[201]:=

? IGForestFireGame

IGForestFireGame[n, pForward] generates a graph on n vertices from the forest fire model.
IGForestFireGame[n, pForward, rBackward] specifies the backward to forward burning probability ratio (default: 1).
IGForestFireGame[n, pForward, rBackward, nAmbassadors]

also specifies the number of ambassador nodes in each step (default: 1).

The forest fire model is a growing graph model. In every time step, a new vertex is added to the graph. The new vertex

chooses the specified number of ambassadors (default: 1) and starts a simulated forest fire at their locations. The fire

spreads through the directed edges. The spreading probability along an edge is given by pForward. The fire may also

spread backwards on an edge with probability pForward * rBackward. When the fire has ended, the newly added

vertex connects to all the vertices that were burned in the fire.

The forest fire model intends to reproduce the following network characteristics, observed in real networks:

◼Heavy-tailed in-degree and out-degree distributions.

◼ Community structure.

◼Densification power-law. The network is densifying in time, according to a power-law rule.

◼ Shrinking diameter. The diameter of the network decreases in time.

The available options are:

◼DirectedEdges False generates an undirected graph.

IGraph/M Documentation | 55

Generate a graph with only forward burning.
In[202]:=

IGForestFireGame30, 0.2, 0,

GraphLayout "SpringEmbedding"

Out[202]=

Generate a graph from the forest fire model, and visualize its community structure.
In[203]:=

IGForestFireGame100, 0.2, 1, 2, DirectedEdges False,

GraphLayout "EdgeLayout" "HierarchicalEdgeBundling"

Out[203]=

56 | IGraph/M Documentation

Plot the cumulative in-degree distribution for different backward to forward burning probability ratios.
In[204]:=

Table

Histogram

VertexInDegree@IGForestFireGame2000, 0.4, r, 2, DirectedEdges True,

"Log", "Log", "SurvivalCount",

PlotLabel Row[{"r=", r}]

,

{r, 0, 0.8, 0.2}

Out[204]=

5 10 50100 500

1

10

100

1000
r=0.

,

5 10 50100 500

1

10

100

1000
r=0.2

,

5 10 50100 500

1

10

100

1000
r=0.4

,

5 10 50100 500

1

10

100

1000
r=0.6

,

5 10 50100 5001000
1

10

100

1000

r=0.8

References

◼ Jure Leskovec, Jon Kleinberg and Christos Faloutsos. Graph evolution: Densification and shrinking diameters.
ACM Transactions on Knowledge Discovery from Data (TKDD), 2007. https://doi.org/10.1145/1217299.1217301

◼ Jure Leskovec, Jon Kleinberg and Christos Faloutsos. Graphs over time: densification laws, shrinking diameters and

possible explanations. KDD '05: Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery

in data mining, 177–187, 2005.

IGCallawayTraitsGame
In[205]:=

? IGCallawayTraitsGame

IGCallawayTraitsGame [n, k, typeWeights, preferenceMatrix]

This function simulates a growing random graph according to the following algorithm:

At each time step, a new vertex is added. Its type is randomly selected according to the type weights. Then k existing pairs

of vertices are selected randomly, and each pair attempts to connect. The probability of success for given types of vertices

is given by the preference matrix.

This algorithm may create self-loops and multi-edges.

The available options are:

◼DirectedEdges True creates a directed graph.

IGraph/M Documentation | 57

https://doi.org/10.1145/1217299.1217301

In[206]:=

IGCallawayTraitsGame20, 2, {1, 2, 3},
1 0.5 0.3

0.5 0.7 0.2
0.3 0.2 0.1

Out[206]=

IGEstablishmentGame
In[207]:=

? IGEstablishmentGame

IGEstablishmentGame[n, k, typeWeights, preferenceMatrix]

This function simulates a growing random graph according to the following algorithm:

At each time step, a new vertex is added. Its type is randomly selected according to the type weights. It attempts to

connect to k distinct existing vertices. The probability of success for given types of vertices is given by the preference

matrix.

The available options are:

◼DirectedEdges True creates a directed graph.

In[208]:=

IGEstablishmentGame100, 10, {2, 1, 2},
1 0.5 0.3

0.5 0.7 0.2
0.3 0.2 0.1

Out[208]=

IGGeometricGame
In[209]:=

? IGGeometricGame

IGGeometricGame[n, radius] generates an n-vertex
geometric random graph on the unit square by connecting points closer than radius.

58 | IGraph/M Documentation

Available options:

◼"Periodic" True assumes a toroidal topology
In[210]:=

IGGeometricGame[50, 0.2]
Out[210]=

Use a toroidal topology and draw “wraparound” edges with dashed lines.
In[211]:=

IGGeometricGame50, 0.2, "Periodic" True //

IGEdgeMap

IfEuclideanDistance @@ # > 0.2, Dashed, None &, EdgeStyle IGEdgeVertexPropVertexCoordinates

Out[211]=

Graph modification

IGRewire
In[212]:=

? IGRewire

IGRewire[graph, n] attempts to rewire the edges of graph n times
while preserving its degree sequence. Weights and other graph properties are discarded.

IGRewire will try to rewire the edges of the graph the given number of times by switching random pairs of edges as

below, thus preserving the graph’s degree sequence.

IGraph/M Documentation | 59

A

B D

C

 ⟶

A

B D

C

 or
A

B D

C

 ⟶

A

B D

C

The switches succeed only if they would not create multi-edges. The parameter n specifies the number of switch

attempts, not the number of successful switches.

For directed graphs, the switches are such that they preserve both the in- and out-degree sequence.

The vertex ordering of the graph is retained.

Warning: Most graph properties, such as edge weights, will be lost.

The available options are:

◼SelfLoops True allows the creation of self-loops.

Generate a random network with scale-free degree distribution:
In[213]:=

IGRewireIGBarabasiAlbertGame200, 2, DirectedEdges False, 10000
Out[213]=

Use SelfLoops True to allow creating loops.
In[214]:=

TableIGRewirePathGraph@Range[4], 100, SelfLoops True, {5}
Out[214]=

 , , , ,

60 | IGraph/M Documentation

IGRewrire never creates any multi-edges. Multigraphs are allowed as input, but a warning is given.
In[215]:=

IGRewire 1

2

3

4

, 10, VertexShapeFunction "Name"

IGRewire : The input is a multigraph. Multi-edges are never created during the rewiring process.

Out[215]=

1

2

3

4

Uniformly sample simple labelled graphs with a given degree sequence by first creating a single realization, then rewiring

it a sufficient amount of times.
In[216]:=

degseq = {3, 3, 2, 2, 1, 1};

IGraph/M Documentation | 61

In[217]:=

Table

IGRewireIGRealizeDegreeSequence[degseq], 100,

{1000}

 // CountsByAdjacencyMatrix // KeySort //

KeyMapAdjacencyGraph#, VertexShapeFunction "Name" &
Out[217]=

1

2

3 4

56

 52, 1 2

3

4
5

6
 55, 12

3

4 5
6

 64,

12 3

4

5
6
 56, 1 23

4

5
6

 61, 1 2

3

4

5

6

 66,

1 2

3

4
5

6
 54,

12

34

56

 59, 12

3

45
6
 56, 12

34

5 6

 46,

1 2 3

4

5
6
 55, 1 2

34

5 6

 55, 1 2 3

4

5
6

 52,
12

3 4

5 6

 72,

12

3

4

5

6

 70, 1 2

3

4

5 6 74, 12

3

4

5 6 53

IGRewireEdges
In[218]:=

? IGRewireEdges

IGRewireEdges[graph, p] rewires each edge of the graph with probability p. Weights and other graph properties are discarded.
IGRewireEdges[graph, p, "In"] rewires the starting point of each edge with probability p. The in-degree sequence is preserved.
IGRewireEdges[graph, p, "Out"] rewires the endpoint of each edge with probability p. The out-degree sequence is preserved.

IGRewireEdges randomly rewires each edge of the graph with the given probability. The vertex ordering is retained.

For directed graphs, it can optionally rewire only the starting point or endpoint of directed edges, thus preserving the out-
or in-degree sequence. In this case, the MultiEdges option is ignored and multi-edges may be created.

Warning: Most graph properties, such as edge weights, will be lost.

The available options are:

◼SelfLoops True allows the creation of self-loops.

◼MultiEdges True allows the creation of multi-edges.

62 | IGraph/M Documentation

Create a random graph with 10 vertices and 20 edges, while allowing for multi-edges:
In[219]:=

IGRewireEdgesRandomGraph[{10, 20}], 1, MultiEdges True

Out[219]=

In[220]:=

EdgeCount[%]
Out[220]=

20

Rewire the endpoint of each edge, preserving the out-degree sequence.
In[221]:=

g = RandomGraph{10, 30}, DirectedEdges True;

{VertexInDegree[g], VertexOutDegree[g]}
Out[222]=

{{5, 4, 1, 2, 2, 2, 5, 3, 3, 3}, {2, 6, 4, 2, 2, 4, 3, 2, 2, 3}}

In[223]:=

rg = IGRewireEdges[g, 1, "Out"];

{VertexInDegree[rg], VertexOutDegree[rg]}
Out[224]=

{{2, 0, 2, 7, 3, 3, 3, 3, 2, 5}, {2, 6, 4, 2, 2, 4, 3, 2, 2, 3}}

Note that multi-edges were created.
In[225]:=

MultigraphQ[rg]
Out[225]=

True

IGVertexContract
In[226]:=

? IGVertexContract

IGVertexContract [g, {{v1, v2,…},…}] returns a graph in which the specified vertex sets are contracted into single vertices.

IGVertexContract[g, {set1, set2, …}] will simultaneously contract multiple vertex sets into single vertices.

The name of a contracted vertex will be the same as the first element of the corresponding set. Vertex ordering is not
retained. Edge ordering is retained only when using both SelfLoops True and MultiEdges True.

Warning: Most graph properties, such as edge weights, will be lost.

The available options are:

◼SelfLoops True keeps any self-loops created during contraction.

◼MultiEdges True keeps any parallel edges created during contraction.

IGraph/M Documentation | 63

In[227]:=

g = 1

2

34

5

;

In[228]:=

IGVertexContract[g, {{1, 2, 3}, {4, 5}}, VertexLabels "Name"]
Out[228]=

14

In[229]:=

IGVertexContractg, {{1, 2, 3}, {4, 5}}, SelfLoops True

Out[229]=

In[230]:=

IGVertexContractg, {{1, 2, 3}, {4, 5}}, SelfLoops True, MultiEdges True

Out[230]=

In[231]:=

IGVertexContractg, {{1, 2, 3}, {4, 5}}, MultiEdges True
Out[231]=

When using both SelfLoops True and MultiEdges True, the edge ordering is maintained relative to the input

graph. This allows easily transferring edge weights, and combining them if necessary.
In[232]:=

g = IGShorthand"a-b-c-d-a,a-c",

EdgeWeight {1, 2, 3, 4, 5}, EdgeLabels "EdgeWeight"

Out[232]=

1

5

4

2 3

a

b

c

d

64 | IGraph/M Documentation

In[233]:=

IGWeightedSimpleGraph

IGVertexContractg, {{"a", "b"}},

SelfLoops True, MultiEdges True,

EdgeWeight IGEdgePropEdgeWeight[g]

,

EdgeLabels "EdgeWeight", VertexLabels "Name"

Out[233]=

1

7

4

3

a

c

d

IGConnectNeighborhood
In[234]:=

? IGConnectNeighborhood

IGConnectNeighborhood[graph] connects each vertex in graph to its 2nd order neighbourhood.
IGConnectNeighborhood[graph, k] connects each vertex in

graph to its order k neighbourhood. Weights and other graph properties are discarded.

IGConnectNeighborhood[g, k] connects each vertex in g to its order k neighbourhood. This operation is also

known as the kth power of the graph.

IGConnectNeighborhood differs from the built-in GraphPower in that it preserves parallel edges and self-loops.

Warning: Most graph properties, such as edge weights, will be lost.

Connect each vertex to its second order neighbourhood:
In[235]:=

IGConnectNeighborhood[CycleGraph[15]]
Out[235]=

IGraph/M Documentation | 65

Connect each vertex to its third order neighbourhood:
In[236]:=

IGConnectNeighborhoodGridGraph[{10, 10}], 3

Out[236]=

IGMycielskian
In[237]:=

? IGMycielskian

IGMycielskian[graph] returns the Mycielskian of graph.

IGMycielskian applies the Mycielski construction to an undirected graph on n ≥ 2 vertices to obtain a larger graph

(the Mycielskian) on 2 n + 1 vertices. If the graph has less than 2 vertices, then instead of applying the standard Mycielski
construction, IGMycielskian simply adds one vertex and one edge.

If the original graph has chromatic number k, its Mycielskian has chromatic number k + 1. The Mycielski construction

preserves the triangle-free property of the graph.
In[238]:=

g = CycleGraph[4]
Out[238]=

In[239]:=

IGChromaticNumber[g], IGTriangleFreeQ[g]

Out[239]=

{2, True}

66 | IGraph/M Documentation

https://en.wikipedia.org/wiki/Mycielskian

In[240]:=

mg = IGMycielskian[g]
Out[240]=

In[241]:=

IGChromaticNumber[mg], IGTriangleFreeQ[mg]

Out[241]=

{3, True}

Construct triangle-free graphs with successively larger chromatic numbers.
In[242]:=

NestListIGMycielskian, IGEmptyGraph[], 5
Out[242]=

 , , ,

, ,

In[243]:=

IGChromaticNumber /@ %

Out[243]=

{0, 1, 2, 3, 4, 5}

IGSmoothen
In[244]:=

? IGSmoothen

IGSmoothen[graph] suppresses degree-2 vertices, thus obtaining
the smallest topologically equivalent graph. The weights of merged edges are added up.

IGSmoothen suppresses all degree-2 vertices, thus obtaining the smallest topologically equivalent (i.e. homeomorphic)
graph. See also IGHomeomorphicQ.

1 2 3

1 3

1 2 3

1 3

IGraph/M Documentation | 67

The vertex names are preserved, and the weights of merged edges are summed up. All other graph properties are dis-
carded. In directed graphs, only those vertices are smoothened which have one incoming and one outgoing edge.

Available options:

◼DirectedEdges False ignores edge directions in the input graph.

The smallest topological equivalent of a path graph consists of two connected vertices.
In[245]:=

IGSmoothen 1 2 3 4 5 , VertexLabels Automatic
Out[245]=

15

The result may contain self-loops. The smallest topological equivalent of a cycle graph is a single vertex with a self-loop.
In[246]:=

IGSmoothen[CycleGraph[10]]
Out[246]=

The result may also contain multi-edges.
In[247]:=

IGSmoothen 1 2

3 4

5

6 7

8 , VertexLabels Automatic

Out[247]=

1 2 5 8

68 | IGraph/M Documentation

If the input is directed, only those vertices are smoothed which have one incoming and one outgoing edge.
In[248]:=

IGSmoothen 1

2
3

4

5

6
7

8
, VertexShapeFunction "Name"

Out[248]=

1

4

6

7

Use DirectedEdges False to treat the input graph as undirected.

In[249]:=

IGSmoothen 1

2
3

4

5

6
7

8
, DirectedEdges False, VertexShapeFunction "Name"

Out[249]=

47

The result is always a weighted graph. When contracting edges, their weights are added up. If the input graph was not
weighted, all of its edge weights are considered to be 1. Thus, the graph distance of any two vertices in the result is always

the same as it was in the input graph.
In[250]:=

g = IGGiantComponent@RandomGraph[{100, 100}]
Out[250]=

IGraph/M Documentation | 69

In[251]:=

tm = IGSmoothen[g]
Out[251]=

In[252]:=

IGEdgeWeightedQ[tm]
Out[252]=

True

In[253]:=

IGDistanceMatrixg, VertexList[tm], VertexList[tm] IGDistanceMatrix[tm]
Out[253]=

True

The result does not contain any degree-2 vertices, except possibly isolated vertices with self-loops.
In[254]:=

Union@VertexDegree[tm]
Out[254]=

{1, 3, 4, 5, 6}

The vertex coordinates, as well as any other graph properties are discarded.
In[255]:=

g = IGMeshGraph@IGLatticeMesh["Hexagonal", {3, 3}]
Out[255]=

70 | IGraph/M Documentation

In[256]:=

IGSmoothen[g]
Out[256]=

Vertex coordinates can be transferred to the new graph as follows:
In[257]:=

IGSmootheng,

VertexCoordinates v_ PropertyValue{g, v}, VertexCoordinates
Out[257]=

An alternative and faster method uses IGVertexMap and IGVertexAssociate:
In[258]:=

IGSmoothen[g] // IGVertexMapIGVertexAssociateGraphEmbedding[g], VertexCoordinates VertexList

Out[258]=

IGraph/M Documentation | 71

Create a tree in which every non-leaf node has a degree of at least 3.
In[259]:=

IGSmoothenIGTreeGame[100], GraphLayout "RadialEmbedding"

Out[259]=

Let us compute the effective resistance of a resistor network by repeated smoothing (merger of resistors in series) and

simplification (merger of resistors in parallel). Resistances are stored as edge weights. A zero-resistance input and output
terminal is added to prevent the premature smoothing of these points.

In[260]:=

resistorGrid =
R
=
3

R = 2R = 0

R = 4

R
=
5

R = 4

R = 2

R = 0

R = 2

R = 1

;

Merge resistors in series ...
In[261]:=

reducedGrid = IGSmoothenresistorGrid

Out[261]=

... then merge resistors in parallel and check the resulting edge weights.
In[262]:=

reducedGrid = IGWeightedSimpleGraphreducedGrid, 1 / Total[1 / {##}] &, EdgeLabels "EdgeWeight"

Out[262]=

12.

2.

0.

2.

0.

72 | IGraph/M Documentation

Repeat until a single resistor remains.
In[263]:=

reducedGrid = IGSmoothenreducedGrid

Out[263]=

In[264]:=

reducedGrid = IGWeightedSimpleGraphreducedGrid, 1 / Total[1 / {##}] &, EdgeLabels "EdgeWeight"

Out[264]=

3.0. 0.

In[265]:=

reducedGrid = IGSmoothenreducedGrid, EdgeLabels "EdgeWeight"

Out[265]=

3.

In[266]:=

IGEdgePropEdgeWeightreducedGrid

Out[266]=

{3.}

Structural properties

Centrality measures

Centralities are various measures that quantify the “importance” of vertices or edges in graphs.

Betweenness
In[267]:=

? IGBetweenness

IGBetweenness[graph] gives a list of betweenness centralities for the vertices of graph.
IGBetweenness[graph, {vertex1, vertex2,…}] gives a list of betweenness centralities for the specified vertices.

In[268]:=

? IGBetweennessCutoff

IGBetweennessCutoff[graph, cutoff] gives the range-limited
betweenness centralities by considering only paths of at most length cutoff.

IGBetweennessCutoff[graph, cutoff, {vertex1, vertex2,
…}] gives the range-limited betweenness centralities for the specified vertices.

In[269]:=

? IGEdgeBetweenness

IGEdgeBetweenness[graph] gives a list of betweenness centralities for the edges of graph.

In[270]:=

? IGEdgeBetweennessCutoff

IGEdgeBetweennessCutoff [graph, cutoff] gives the range-limited
edge betweenness centralities by considering only paths of at most length cutoff.

The betweenness of a vertex or edge is, roughly speaking, the number of shortest paths passing through it. More formally,

IGraph/M Documentation | 73

the betweenness of vertex i is bi = ∑i≠s≠t
gst
i

gst
, where gst is the total number of shortest paths (geodesics) between vertices s

and t, and gst
(i)

 is the number of shortest paths between vertices s and t that pass through i.

Weighted graphs and multigraphs are supported by all betweenness functions in IGraph/M.

Note that as of Mathematica 13.0, the built-in BetweennessCentrality function ignores edge weights and multi-
edges, which causes it to yield different results from IGBetweenness.

Available options:

◼Normalized True will compute the normalized betweenness by dividing the result by the number of (ordered or
unordered) vertex pairs used in the shortest path calculation. Thus the normalization factor is (V - 1) (V - 2) for directed

graphs and
1
2
(V - 1) (V - 2) for undirected graphs. The normalized value lies between 0 and 1.

Visualize the vertex and edge betweenness of a weighted geometrical graph, where weights represent Euclidean

distances.
In[271]:=

pts = RandomPointDisk[], 100;

IGMeshGraph

DelaunayMesh[pts],

EdgeStyle Thick, VertexStyle EdgeForm[None]

 //

IGVertexMap[

ColorData["SolarColors"],

VertexStyle Rescale@*IGBetweenness

]/*

IGEdgeMap[

ColorData["SolarColors"],

EdgeStyle Rescale@*IGEdgeBetweenness

]

Out[272]=

Compute the betweenness of a subset of vertices.
In[273]:=

g = ExampleData"NetworkGraph", "DolphinSocialNetwork";

In[274]:=

TakeVertexList[g], 5

Out[274]=

{Beak, Beescratch, Bumper, CCL, Cross}

74 | IGraph/M Documentation

In[275]:=

IGBetweenness[g, %]

Out[275]=

{34.9212, 390.384, 16.6032, 4.34405, 0.}

Visualize the betweenness of a periodic grid with slightly randomized edge weights.
In[276]:=

n = 40;

IGSquareLattice{n, n},

"Periodic" True,

VertexCoordinates Tuples[Range[n], {2}],

EdgeWeight {_ RandomReal[{.99, 1.01}]},

GraphStyle "BasicBlack",

EdgeShapeFunction None,

VertexSize 1

 // IGVertexMap[

ColorData["BlueGreenYellow"],

VertexStyle Rescale@*IGBetweenness

]

Out[277]=

Possible issues

Betweenness computation involves comparing the lengths of paths, and deciding which specific path is the shortest, and

which paths have equal lengths. When non-integer edge weights are used, the path length computation is subject to

roundoff errors, which may cause the path length comparison to fail. igraph mitigates this by comparing the lengths using

tolerances, however, there is still a small risk that roundoff errors may affect the result. To avoid this potential problem

entirely, use integer weights. For example, if the weights are rational, multiply them by the least common multiple of their
denominators.

Closeness
In[278]:=

? IGCloseness

IGCloseness[graph] gives a list of closeness centralities for the vertices of graph.
IGCloseness[graph, {vertex1, vertex2,…}] gives a list of closeness centralities for the specified vertices.

IGraph/M Documentation | 75

In[279]:=

? IGClosenessCutoff

IGClosenessCutoff[graph, cutoff] gives the range-limited
closeness centralities by considering only paths of at most length cutoff.

IGClosenessCutoff[graph, cutoff, {vertex1, vertex2,…}] gives the range-limited closeness centralities for the specified vertices.

In[280]:=

? IGNeighborhoodCloseness

IGNeighborhoodCloseness[graph, cutoff] gives the range-limited
closeness centralities along with the number of vertices reachable within the cutoff distance.

IGNeighborhoodCloseness[graph, cutoff, {vertex1, vertex2,…}] gives the
range-limited closeness centralities and number of reachable vertices for the specified vertices.

The normalized closeness centrality of a vertex is the inverse average shortest path length to other vertices.

Weighted graphs are supported.

Available options:

◼Normalized False will compute the non-normalized closeness, i.e. the inverse of the sum of shortest path

lengths to all other vertices.

There is no standard definition of closeness centrality for disconnected graphs. When the graph is disconnected,
IGraph/M will only consider the distances to reachable vertices. In the undirected case, this effectively computes the

closeness separately for each connected component. Use IGNeighborhoodCloseness to obtain both the closeness

values, as well as how many vertices were reachable from each vertex. This information allows for computing various

generalizations of closeness centrality for disconnected graphs.

Visualize the closeness of nodes in a weighted geometrical graph where weights correspond to Euclidean distances.
In[281]:=

pts = RandomPointPolygon@CirclePoints[3], 75;

IGVertexMap

ColorData"Rainbow",

VertexStyle Rescale@*IGCloseness,

IGMeshGraphDelaunayMesh[pts], GraphStyle "BasicBlack"

Out[282]=

For isolated vertices, Indeterminate is returned.
In[283]:=

IGCloseness@IGShorthand["1,2-3"]
Out[283]=

{Indeterminate, 1., 1.}

76 | IGraph/M Documentation

Harmonic centrality
In[284]:=

? IGHarmonicCentrality

IGHarmonicCentrality[graph] gives the harmonic centralities for the vertices of graph.
IGHarmonicCentrality[graph, {vertex1, vertex2,…}] gives the harmonic centralities for the specified vertices.

In[285]:=

? IGHarmonicCentralityCutoff

IGHarmonicCentralityCutoff [graph, cutoff] gives the
range-limited harmonic centralities by considering only paths of at most length cutoff.

IGHarmonicCentralityCutoff [graph, cutoff, {vertex1,
vertex2,…}] gives the range-limited harmonic centralities of the specified vertices.

The harmonic centrality of a vertex is the average inverse shortest path length to all other vertices. The inverse shortest
path length to unreachable vertices is considered to be zero.

Available options:

◼Normalized False computes the non-normalized harmonic centrality, i.e. the sum of inverse shortest path

length to all other vertices.
In[286]:=

RandomGraph{30, 40}, VertexSize Large //

IGVertexMapColorData"Rainbow", VertexStyle IGHarmonicCentrality/*Rescale

Out[286]=

PageRank
In[287]:=

? IGPageRank

IGPageRank[graph] gives a list of PageRank centralities for the vertices
of the graph using damping factor 0.85. Available Method options: {"Arnoldi", "PRPACK"}.

IGPageRank[graph, damping] gives a list of PageRank centralities for the vertices of the graph using the given damping factor.

IGraph/M Documentation | 77

In[288]:=

? IGPersonalizedPageRank

IGPersonalizedPageRank [graph, reset] gives a list of personalized
PageRank centralities for the vertices of the graph with personalization vector reset.

IGPersonalizedPageRank [graph, reset, damping] uses the given damping factor.
IGPersonalizedPageRank [graph, vertex1 ->weight1, vertex2 ->

weight2,…, damping] uses non-zero personalization weights only for the specified vertices.

The PageRank centrality of a vertex is the fraction of time a random walker would spend on that vertex. The walker jumps

from vertex to vertex randomly, following outward edges with probabilities proportional to their weights. Additionally,
after each step, with a probability 1 - d the walk is restarted from a random vertex. d is called the damping factor. If the

walker is stuck in a sink vertex (i.e. a vertex with no outgoing edges), the walk is also restarted.

In the standard version of PageRank, when the walk is restarted, the starting vertex is chosen uniformly. In the personal-
ized version, it is chosen with probabilities proportional to the values in the reset parameter.

Weighted graphs and multigraphs are supported, and self-loops are taken into consideration.

Note that as of Mathematica 13.0, the built-in PageRankCentrality function ignores self-loops.

The default damping factor is 0.85.

The following Method options are available:

◼"Arnoldi" uses ARPACK, and solves PageRank as an eigenvalue problem.

◼"PRPACK" uses PRPACK and uses the algebraic method. It is the default method, and usually much faster than

"Arnoldi".

Plot the logarithmic histogram of PageRank scores of the network of webpage in the nd.edu domain.
In[289]:=

ndWeb = ExampleData"NetworkGraph", "WorldWideWeb";

In[290]:=

Histogram[IGPageRank[ndWeb], "Log", {"Log", "PDF"},

Frame True, FrameLabel {"PageRank", "PDF"}]
Out[290]=

10-6 10-5 10-4 0.001

1

1000

106

PageRank

P
D
F

The personalization weights may be given as a vector of the same length as the vertex list …
In[291]:=

g = RandomGraph{10, 20}, DirectedEdges True;

IGPersonalizedPageRank[g, RandomReal[1, VertexCount[g]]]
Out[292]=

{0.0433579, 0.129471, 0.23356, 0.113496,

0.000101892, 0.12872, 0.260584, 0.024101, 0.0324582, 0.0341504}

78 | IGraph/M Documentation

https://github.com/DavidKurokawa/prpack/

… or as an association from vertex names to weights, in which case the weight of non-included vertices is taken to be zero.
In[293]:=

IGPersonalizedPageRank[g, 1 1.5, 3 0.5]

Out[293]=

{0.297935, 0.0717967, 0.168933, 0.290878, 0., 0.0376334, 0.132824, 0., 0., 0.}

Personalize PageRank by always restarting the walk from one of two vertices (29 or 74) on a grid graph:
In[294]:=

g = IGSquareLattice{10, 10}, VertexSize Large;

In[295]:=

g // IGVertexMapColorData"Rainbow",

VertexStyle IGPersonalizedPageRank[#, 29 1, 74 1, 0.99] &/*Rescale

Out[295]=

LinkRank
In[296]:=

? IGLinkRank

IGLinkRank[graph] gives a list of LinkRank centralities for the edges of
the graph using damping factor 0.85. Available Method options: {"Arnoldi", "PRPACK"}.

IGLinkRank[graph, damping] gives a list of LinkRank centralities for the edges of the graph using the given damping factor.

In[297]:=

? IGPersonalizedLinkRank

IGPersonalizedLinkRank[graph, reset] gives a list of personalized
LinkRank centralities for the edges of the graph with personalization vector reset.

IGPersonalizedLinkRank[graph, reset, damping] uses the given damping factor.
IGPersonalizedLinkRank[graph, vertex1 ->weight1, vertex2 ->

weight2,…, damping] uses non-zero personalization weights only for the specified vertices.

LinkRank is the equivalent of PageRank for edges. The LinkRank of an edge is the relative frequency of traversing that
edge by a random walker. For a detailed description of the random walk process, see the PageRank section.

The LinkRank of edges can be computed from the PageRank by simply dividing the PageRank of each vertex between its

outgoing edges, proportionally with their edge weights. The LinkRank scores of the out-edges of a vertex add up to the

PageRank of that vertex. The LinkRank scores of all edges in the graph add up to 1.

Weighted graphs and multigraphs are supported, and self-loops are taken into consideration.

The available Method options are the same as for IGPageRank.

IGraph/M Documentation | 79

Visualize both the LinkRank and PageRank of a random directed graph.
In[298]:=

maxNorm = # / Max[#] &;

g = RandomGraph{15, 30}, DirectedEdges True,

EdgeStyle Thick, VertexSize Large, GraphStyle "BasicBlack";

g // IGEdgeMapColorData"Rainbow", EdgeStyle IGLinkRank/*maxNorm //

IGVertexMapColorData"Rainbow", VertexStyle IGPageRank/*maxNorm
Out[300]=

Visualize the personalized version of LinkRank and PageRank, always starting the random walk from vertex 1.
In[301]:=

pers = 1 1;

Graph[g, VertexLabels "Name"] //

IGEdgeMapColorData"Rainbow", EdgeStyle IGPersonalizedLinkRank[#, pers] &/*maxNorm //

IGVertexMapColorData"Rainbow", VertexStyle IGPersonalizedPageRank[#, pers] &/*maxNorm
Out[302]=

1

2

3 45

6

7

8

9

10
11

1213

14

15

Eigenvector centrality
In[303]:=

? IGEigenvectorCentrality

IGEigenvectorCentrality[graph] gives the eigenvector centrality of each vertex.

Eigenvector centrality is based on the idea that the importance (centrality) of a vertex should be affected not only by how

many other vertices point to it, but also by the importance of its neighbours. The eigenvector centrality of a vertex is

proportional to the sum of centralities of its neighbours. Mathematically, the eigenvector centrality is the leading eigenvec-
tor of the adjacency matrix.

Eigenvector centrality is meaningful for connected graphs only. Disconnected graphs should be decomposed into their
components, and the eigenvector centrality computed separately for each. The vertex centrality scores will be compara-
ble only within components, not between separate components.

In undirected graphs, the diagonal of the adjacency matrix is assumed to contain twice the number of self-loops on each

vertex. This makes the undirected result consistent with the directed one when each undirected edge is replaced by

reciprocal directed ones.

For directed graphs, the left eigenvector of the adjacency matrix is calculated. In other words, the centrality of a vertex is

proportional to the sum of centralities of vertices pointing to it.

Weighted and directed graphs are supported.

80 | IGraph/M Documentation

The available options are:

◼Normaized True will scale the result so that the maximum centrality is 1. The default is True.

◼DirectedEdges False ignores edge directions.

Kleinberg’s hub and authority scores
In[304]:=

? IGHubScore

IGHubScore[graph] gives Kleinberg's hub score for each vertex.

In[305]:=

? IGAuthorityScore

IGAuthorityScore[graph] gives Kleinberg's authority score for each vertex.

Weighted graphs are supported.

The available options are:

◼Normalized True scales the result so that the maximum centrality is 1. The default is True.

Burt’s constraint score
In[306]:=

? IGConstraintScore

IGConstraintScore[graph] returns Burt's constraint score for each vertex.

Weighted graphs are supported.

Centralization
In[307]:=

? IG*Centralization

IGraphM`

IGBetweennessCentralization IGDegreeCentralization

IGClosenessCentralization IGEigenvectorCentralization

Centralization is computed from centrality values in a way equivalent to

Total[Max[centralities] - centralities]. With the (default) option Normalized True, the result is

normalized by dividing by the highest possible centralization score of any graph of the same directedness on the same

number of vertices.
In[308]:=

g = IGBarabasiAlbertGame100, 2, DirectedEdges False;

In[309]:=

IGBetweennessCentralization[g]
Out[309]=

0.194343

In[310]:=

IGClosenessCentralization[g]
Out[310]=

0.275726

IGraph/M Documentation | 81

In[311]:=

IGDegreeCentralizationg, SelfLoops False

Out[311]=

0.144919

In[312]:=

IGEigenvectorCentralization[g]
Out[312]=

0.820631

For most centrality types, the highest centralization is achieved by the StarGraph.
In[313]:=

IGBetweennessCentralization@StarGraph[5]
Out[313]=

1.

In the case of the degree centralization, the highest possible centralization score depends on whether self-loops are

allowed. This is controlled by the SelfLoops option of IGDegreeCentralization. The default is

SelfLoops True.
In[314]:=

IGDegreeCentralization ,

IGDegreeCentralization , SelfLoops False,

IGDegreeCentralization

Out[314]=

{0.666667, 1., 1.}

Topological sorting and acyclic graphs

IGDirectedAcyclicGraphQ
In[315]:=

? IGDirectedAcyclicGraphQ

IGDirectedAcyclicGraphQ[graph] tests if graph is directed and acyclic.

IGDirectedAcyclicGraphQ tests if a graph is directed and has no directed cycles.
In[316]:=

IGDirectedAcyclicGraphQ /@ {IGShorthand["1->2->3->1"], IGShorthand["1->2->3<-1"]}
Out[316]=

{False, True}

IGDirectedAcyclicGraphQ returns True for graphs with no edges.
In[317]:=

IGDirectedAcyclicGraphQ[IGEmptyGraph[3]]
Out[317]=

True

82 | IGraph/M Documentation

IGTopologicalOrdering
In[318]:=

? IGTopologicalOrdering

IGTopologicalOrdering [graph] returns a permutation that sorts the vertices
in topological order. Note that the values returned are vertex indices, not vertex names.

IGTopologicalOrdering is to the built-in TopologicalSort as Ordering is to Sort: it returns the permutation

which sorts vertices in topological order. When vertices are ordered topologically, all directed edges point from earlier
vertices to later ones.

Graphs must be acyclic for topological sorting to be possible.
In[319]:=

g = A BC

D

E

F

G

H

I

J

;

In[320]:=

IGDirectedAcyclicGraphQ[g]
Out[320]=

True

In[321]:=

p = IGTopologicalOrdering[g]
Out[321]=

{5, 8, 9, 4, 6, 1, 2, 3, 10, 7}

In[322]:=

VertexList[g]〚p〛
Out[322]=

{E, H, I, D, F, A, B, C, J, G}

IGraph/M Documentation | 83

If the vertices are laid out from left to right in topological order, all edges will point from left to right.
In[323]:=

curvedEdgeoffset_[{a_, ___, b_}, ___] :=

Arrow@BezierCurvea, (a + b) / 2 + offset Reverse[b - a], b

Graphg,

EdgeShapeFunction curvedEdge[2 / 3]

(* in M12.0 or later simply use {{"CurvedEdge","Curvature"1.5}} *)

 // IGVertexMap{#, 0} &, VertexCoordinates IGTopologicalOrdering/*Ordering

Out[324]=

A B CDE F GH I J

When the graph contains cycles, $Failed is returned.
In[325]:=

IGTopologicalOrdering[IGShorthand["1->2->3->4->5, 5->3, 5->6"]]

IGraphM: src/properties/dag.c:114 - The graph has cycles; topological sorting is only possible in acyclic graphs.

IGraphM: igraph returned with error: Invalid value.

Out[325]=

$Failed

IGFeedbackArcSet
In[326]:=

? IGFeedbackArcSet

IGFeedbackArcSet[graph] computes a feedback edge set of graph. Removing
these edges makes the graph acyclic. Available Method options: {"IntegerProgramming",
"EadesLinSmyth"}. "IntegerProgramming" is guaranteed to find a minimum feedback arc set.

IGFeedbackArcSet[] returns a set of directed edges (also called arcs) the removal of which makes the graph acyclic.

With Method "IntegerProgramming", it finds an exact minimal feedback arc set through integer programming

using the triangle inequality formulation. With Method "EadesLinSmyth", it finds a feedback arc set (not necessar-
ily minimal) using the fast “GR” heuristic of Eades, Lin and Smyth (1993).

84 | IGraph/M Documentation

The following directed graph is not acyclic.
In[327]:=

g = RandomGraph{10, 20}, DirectedEdges True, VertexLabels "Name"

Out[327]=

1

2

3

4

56

7

8

9

10

In[328]:=

AcyclicGraphQ[%], IGDirectedAcyclicGraphQ[%]

Out[328]=

{False, False}

Find a set of edges whose removal breaks all cycles.
In[329]:=

IGFeedbackArcSet[g]
Out[329]=

{1 9, 3 8, 4 8}

In[330]:=

ag = EdgeDelete[g, %]

Out[330]=

1

2

3

45 6

7

8

9

10

In[331]:=

IGDirectedAcyclicGraphQ[ag]
Out[331]=

True

Vertices of a directed acyclic graph can be sorted topologically. IGTopologicalOrdering returns a permutation that

sorts them this way, and thus makes the graph’s adjacency matrix upper triangular.
In[332]:=

perm = IGTopologicalOrdering[ag]
Out[332]=

{9, 8, 4, 5, 6, 7, 1, 10, 2, 3}

IGraph/M Documentation | 85

In[333]:=

Witham = AdjacencyMatrix[ag],

ArrayPlot /@ {am, am〚perm, perm〛}

Out[333]=

 ,

References

◼ P. Eades, X. Lin, and W. F. Smyth, A fast and effective heuristic for the feedback arc set problem, Inf. Process. Lett. 47,
319 (1993). https://doi.org/10.1016/0020-0190(93)90079-O

Chordal graphs

Chordal graphs are graphs that do not contain induced cycles with more than three vertices.

IGChordalQ
In[334]:=

? IGChordalQ

IGChordalQ[graph] tests if graph is chordal.

A graph is chordal if each of its cycles of four or more nodes has a chord, i.e. an edge joining two non-adjacent vertices in

the cycle. Equivalently, all chordless cycles in a chordal graph have at most 3 vertices.

Chordal graphs are also called rigid circuit graphs or triangulated graphs.

Grid graphs are not chordal because they have chordless 4 cycles.
In[335]:=

g = GridGraph[{2, 3}, VertexLabels "Name"]
Out[335]=

1

2

3

4

5

6

In[336]:=

IGChordalQ[g]
Out[336]=

False

86 | IGraph/M Documentation

https://doi.org/10.1016/0020-0190(93)90079-O

Adding chords to the 4 cycles makes them chordal.
In[337]:=

EdgeAdd[g, {1 4, 4 5}]
Out[337]=

1

2

3

4

5

6

In[338]:=

IGChordalQ[%]
Out[338]=

True

IGChordalCompletion
In[339]:=

? IGChordalCompletion

IGChordalCompletion[graph] gives a set of edges that, when added
to graph, make it chordal. The edge-set this function returns is usually not minimal.

IGChordalCompletion computes a set of edges that, when added to a graph, make it chordal. The edge set returned

is not usually minimal, i.e. some of the edges may not be necessary to create a chordal graph.
In[340]:=

g = CycleGraph[5]
Out[340]=

IGraph/M Documentation | 87

In[341]:=

completion = IGChordalCompletion[g];

HighlightGraphEdgeAddg, completion, completion

Out[342]=

IGMaximumCardinalitySearch
In[343]:=

? IGMaximumCardinalitySearch

IGMaximumCardinalitySearch[graph] assigns a rank to each vertex, from 1 to n, according
to the maximum cardinality search algorithm. Visiting the vertices of the graph by decreasing
rank is equivalent to always visiting the next vertex with the most already visited neighbours.

The maximum cardinality search algorithm visits the vertices of the graph in such an order so that every time the vertex

with the most already visited neighbours is visited next. Ties are broken arbitrarily. Then vertices are assigned ranks α in

decreasing order from the vertex count of the graph to 1. IGMaximumCardinalitySearch returns these ranks.

The visiting order is animated below:
In[344]:=

g = ;

In[345]:=

ranks = AssociationThreadVertexList[g], IGMaximumCardinalitySearch[g]

Out[345]=

1 10, 2 3, 3 8, 4 6, 5 7, 6 2, 7 1, 8 5, 9 4, 10 9

88 | IGraph/M Documentation

In[346]:=

verts = Keys@Reverse@Sort[ranks]

Table

HighlightGraph

Graph[g, VertexLabels "Name"],

Takeverts, i

,

i, VertexCount[g]

 // ListAnimate
Out[346]=

{1, 10, 3, 5, 4, 8, 9, 2, 6, 7}

Out[347]=

1

2

3

4

5

6

7

8

9

10

The rank α is useful for deciding the chordality of a graph. A graph is chordal if and only if any two neighbors of a vertex

which are higher in rank than it are connected to each other.

Label the vertices of a graph with their ranks.
In[348]:=

g = IGShorthand"a-b-c-d-a-e-f-g-h-e-g";

IGVertexMapRow[{#1, ": ", #2}] &, VertexLabels VertexList, IGMaximumCardinalitySearch, g
Out[349]=

a: 8

b: 1

c: 2

d: 3

e: 7

f: 4

g: 5

h: 6

Notice that vertex b has two higher-rank neighbours that are not connected to each other. This graph is not chordal. Use

IGChordalCompletion to determine which edges to add to it to make it chordal.
In[350]:=

IGChordalCompletion[g]
Out[350]=

{c a}

References

◼ R. E. Tarjan, M. Yannakakis: Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs,
and Selectively Reduce Acyclic Hypergraphs, SIAM J. Comput., 13(3), 566–579 (1984). https://doi.org/10.1137/0213035

IGraph/M Documentation | 89

Clustering coefficient
In[351]:=

? IG*ClusteringCoefficient

IGraphM`

IGAverageLocalClusteringCoefficient IGLocalClusteringCoefficient

IGGlobalClusteringCoefficient IGWeightedClusteringCoefficient

Clustering coefficients are measures of the degree to which vertices in a graph tend to cluster together. They are also

referred to as transitivity, as they measure how often two vertices that are connected through a third one are also directly

connected.

All clustering coefficient calculations in IGraph/M ignore edge directions.

IGGlobalClusteringCoefficient
In[352]:=

? IGGlobalClusteringCoefficient

IGGlobalClusteringCoefficient[graph] gives the global clustering coefficient of graph.

The clustering coefficient of an undirected graph is defined as

C =
number of closed ordered triplets

number of connected ordered triplets

The available options are:

◼"ExcludeIsolates" True will cause Indeterminate to be returned if the graph has no connected triplets.
With the default "ExcludeIsolates" False, 0 is returned.

The following graph has 10 connected ordered triplets, namely {3, 1, 2}, {2, 1, 3}, {1, 2, 3}, {3, 2, 1}, {2, 3, 1}, {2, 3, 4}, {1, 3, 4},
{1, 3, 2}, {4, 3, 2}, {4, 3, 1}. Out of these, only 6 are closed: {1, 3, 2}, {1, 2, 3}, {2, 1, 3}, {2, 3, 1}, {3, 2, 1}, {3, 1, 2}. Thus the

clustering coefficient is 6 / 10 = 0.6.
In[353]:=

IGGlobalClusteringCoefficient

1

2

3 4

Out[353]=

0.6

IGLocalClusteringCoefficient
In[354]:=

? IGLocalClusteringCoefficient

IGLocalClusteringCoefficient[graph] gives the local clustering coefficient of each vertex.

The local clustering coefficient of a vertex is defined as

C =
number of connected pairs of neighbours

total number of pairs of neighbours

The available options are:

◼"ExcludeIsolates" True will cause Indeterminate to be returned for degree 0 and degree 1 vertices. With

the default "ExcludeIsolates" False, 0 is returned.

90 | IGraph/M Documentation

The the following graph, vertex 4 has two neighbours which are disconnected, making its local clustering zero. However,
vertex 5 has only one neighbour, thus computing the local clustering for it arguably does not make sense. Setting

"ExcludeIsolates" True serves to distinguish these two cases by returning Indeterminate for vertex 5.
In[355]:=

IGLocalClusteringCoefficient
1

2

3 4 5

Out[355]=

{1., 1., 0.333333, 0., 0.}

In[356]:=

IGLocalClusteringCoefficient
1

2

3 4 5 , "ExcludeIsolates" True

Out[356]=

{1., 1., 0.333333, 0., Indeterminate}

IGAverageLocalClusteringCoefficient
In[357]:=

? IGAverageLocalClusteringCoefficient

IGAverageLocalClusteringCoefficient [graph] gives the average local clustering coefficient of graph.

The available options are:

◼"ExcludeIsolates" True will cause degree 0 and degree 1 vertices to be excluded from the calculation.

With "ExcludeIsolates" True, the local clustering coefficient of vertex 4 will be excluded from the calculation of
the average.

In[358]:=

IGAverageLocalClusteringCoefficient

1

2

3 4 ,

IGAverageLocalClusteringCoefficient

1

2

3 4 , "ExcludeIsolates" True

Out[358]=

{0.583333, 0.777778}

When the graph has no vertices with degree of at least 2, and "ExcludeIsolates" True is set, the result will be

Indeterminate.
In[359]:=

IGAverageLocalClusteringCoefficient , "ExcludeIsolates" True

Out[359]=

Indeterminate

IGWeightedClusteringCoefficient
In[360]:=

? IGWeightedClusteringCoefficient

IGWeightedClusteringCoefficient[graph] gives the weighted local clustering
coefficient, as defined by A. Barrat et al. (2004) http://dx.doi.org/10.1073/pnas.0400087101

IGraph/M Documentation | 91

IGWeightedClusteringCoefficient computes the weighted local clustering coefficient. This function expects a

weighted graph as input.

The available options are:

◼"ExcludeIsolates" True will cause Indeterminate to be returned for degree 0 and degree 1 vertices. With

the default "ExcludeIsolates" False, 0 is returned.

References

◼ A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, The architecture of complex weighted networks, PNAS

101, 3747 (2004). https://dx.doi.org/10.1073/pnas.0400087101

Neighbour degrees

IGAverageNeighborDegree
In[361]:=

? IGAverageNeighborDegree

IGAverageNeighborDegree[graph] gives the average neighbour degree of the vertices of graph.
IGAverageNeighborDegree[graph, {vertex1, vertex2,…}] gives the average neighbour degree of the specified vertices.
IGAverageNeighborDegree[graph, All, mode] uses the given mode, "In",

"Out" or "All", to find neighbours and degrees in directed graphs. The default is "Out".
IGAverageNeighborDegree[graph, All, degreeMode, neighborMode] uses different modes for finding neighbours and degrees.

IGAverageNeighborDegree computes the average of the degrees of each vertex’s neighbours. In weighted graphs, a

weighted average is used:

knn,u =
1

su

v

wuv kv

knn,u denotes the average neighbour degree of vertex u, kv is the degree of vertex v, wuv is the weighted adjacency matrix,

and su = ∑v wuv is the strength of vertex u.

IGAverageNeighborDegree is similar to MeanNeighborDegree, with a few differences: it can compute the

measure for only a subset of vertices, the interpretation of degrees and neighbours can be controlled independently in

directed graphs, and for vertices which have no neighbours it returns Indeterminate instead of 0.

Average neighbour degree in a star graph:
In[362]:=

IGAverageNeighborDegree[StarGraph[4]]
Out[362]=

{1., 3., 3., 3.}

Compute the result only for vertices 1 and 3:
In[363]:=

IGAverageNeighborDegree[StarGraph[4], {1, 3}]
Out[363]=

{1., 3.}

All computes the result for all vertices (the default):
In[364]:=

IGAverageNeighborDegree[StarGraph[4], All]
Out[364]=

{1., 3., 3., 3.}

92 | IGraph/M Documentation

https://dx.doi.org/10.1073/pnas.0400087101

When a vertex has no neighbours, Indeterminate is returned:
In[365]:=

IGAverageNeighborDegree[IGShorthand["1,2-3"]]
Out[365]=

{Indeterminate, 1., 1.}

In directed graphs, the out-degrees of out-neighbours are considered by default.
In[366]:=

g =

1

23

;

In[367]:=

IGAverageNeighborDegree[g]
Out[367]=

{1., 1., 1.}

Use in-degrees of in-neighbours instead:
In[368]:=

IGAverageNeighborDegree[g, All, "In"]
Out[368]=

{Indeterminate, 1., 1.}

Use the in-degrees of all neighbours:
In[369]:=

IGAverageNeighborDegree[g, All, "In", "All"]
Out[369]=

{2., 1.33333, 1.33333}

Compute a weighted neighbour degree average. The weights used in averaging are taken from the edge weights:
In[370]:=

IGAverageNeighborDegree 3

1

1

2

2
1 2

3

4

5

6

Out[370]=

{2.2, 1.85714, 3., 3., 3., 3.}

References

◼ A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, The architecture of complex weighted networks, PNAS

101, 3747 (2004). https://dx.doi.org/10.1073/pnas.0400087101

IGraph/M Documentation | 93

https://dx.doi.org/10.1073/pnas.0400087101

IGAverageDegreeConnectivity
In[371]:=

? IGAverageDegreeConnectivity

IGAverageDegreeConnectivity [graph] gives the average neighbour degree for vertices of degree k=1, 2,…
IGAverageDegreeConnectivity [graph, mode] uses the given mode, "In",

"Out" or "All", to find neighbours and degrees in directed graphs. The default is "Out".
IGAverageDegreeConnectivity [graph, degreeMode, neighborMode] uses different modes for finding neighbours and degrees.

IGAverageDegreeConnectivity computes the average neighbour degree as a function of the vertex degree. The ith

element of the result is the average of the IGAverageNeighborDegree result for all vertices of degree i.

In[372]:=

g = RandomGraph[{30, 50}];

In[373]:=

IGAverageDegreeConnectivity[g]
Out[373]=

{3., 3.92857, 3.44444, 4.21429, 4.46667, 4.33333, Indeterminate, 4.125}

An equivalent implementation of IGAverageDegreeConnectivity is:

In[374]:=

TransposeVertexDegree[g], IGAverageNeighborDegree[g] //

GroupBy#, First Last, Mean & //

Lookup#, Range@Max@VertexDegree[g], Indeterminate &

Out[374]=

{3., 3.92857, 3.44444, 4.21429, 4.46667, 4.33333, Indeterminate, 4.125}

Compute the average degree connectivity curve for a scale free network:
In[375]:=

ListPlot

IGAverageDegreeConnectivity@IGStaticPowerLawGame[1000, 2000, 2],

FrameLabel "degree", "average neighbour degree",

PlotTheme "Detailed"

Out[375]=

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

degree

av
er
ag
e
ne
ig
hb
ou
r
de
gr
ee

References

◼ A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, The architecture of complex weighted networks, PNAS

101, 3747 (2004). https://dx.doi.org/10.1073/pnas.0400087101

Shortest paths

The length of a path between two vertices is the number of edges the path consists of. Functions that use edge weights

94 | IGraph/M Documentation

https://dx.doi.org/10.1073/pnas.0400087101

consider the path length to be the sum of edge weights along the path.

IGDistanceMatrix
In[376]:=

? IGDistanceMatrix

IGDistanceMatrix[graph] gives the shortest path length between each vertex pair
in graph. Available Method options: {"Unweighted", "Dijkstra", "BellmanFord", "Johnson"}.

IGDistanceMatrix[graph, fromVertices] gives the shortest path lengths between from the given vertices to each vertex in graph.
IGDistanceMatrix[graph, fromVertices, toVertices] gives the shortest path lengths between the given vertices in graph.

IGDistanceMatrix takes the following Method options:

◼Automatic selects a method automatically. As of IGraph/M 0.5, "Unweighted" is selected for unweighted graphs,
"Dijkstra" for weighted graphs with only positive weights, and "Johnson" otherwise.

◼"Unweighted" ignores weights

◼"Dijkstra" uses Dijkstra’s algorithm. All weights must be non-negative.

◼"BellmanFord" uses the Bellman–Ford algorithm. Negative weights are supported but all cycles must have a non-
negative total weight.

◼"Johnson" uses the Johnson algorithm. Negative weights are supported but all cycles must have a non-negative

total weight.

The igraph C core may override explicit method settings when appropriate. For example, if the graph is not weighted, it
always uses "Unweighted".

IGDistanceCounts
In[377]:=

? IGDistanceCounts

IGDistanceCounts[graph] gives a histogram of unweighted shortest path
lengths between all vertex pairs. The kth element of the result is the count of shortest paths
of length k. In undirected graphs, each path is counted only along one traversal direction.

IGDistanceCounts[graph, fromVertices] gives a histogram
of unweighted shortest path lengths from the given vertices to all others.

IGDistanceCounts[graph] counts all-pair unweighted shortest path lengths in the graph.

IGDistanceCounts[graph, {v1, v2, …}] counts unweighted shortest path lengths for paths starting at the

given vertices.

For weighted path lengths, or to restrict the computation to both certain start and end vertex sets, use

IGDistanceHistogram[].

IGraph/M Documentation | 95

Compute how the shortest path length distribution changes as we rewire a grid graph k times.
In[378]:=

Table

ListPlot

NormalizeIGDistanceCounts@IGRewireGridGraph[{50, 50}], k, Total,

Joined True, Filling Bottom, PlotLabel StringTemplate"rewiring steps: ``"[k]

,

{k, {0, 5, 10, 20, 50, 100}}

Out[378]=

20 40 60 80 100

0.005
0.010
0.015
0.020

rewiring steps: 0

,

20 40 60

0.005
0.010
0.015
0.020
0.025
0.030

rewiring steps: 5

,

10 20 30 40 50

0.01

0.02

0.03

0.04

0.05

rewiring steps: 10

,

10 20 30 40

0.01
0.02
0.03
0.04
0.05
0.06
0.07

rewiring steps: 20

,

5 10 15 20 25 30

0.02
0.04
0.06
0.08
0.10

rewiring steps: 50

,

5 10 15 20 25

0.02
0.04
0.06
0.08
0.10
0.12
0.14

rewiring steps: 100

IGNeighborhoodSize
In[379]:=

? IGNeighborhoodSize

IGNeighborhoodSize[graph, vertex] gives the number of direct neighbours of vertex, i.e. its degree.
IGNeighborhoodSize[graph, All] gives the number of direct neighbours of all vertices.
IGNeighborhoodSize[graph, {vertex1, vertex2,…}] gives the number of direct neighbours of the specified vertices.
IGNeighborhoodSize[graph, All, max] gives the number of vertices reachable in at most max hops.
IGNeighborhoodSize[graph, All, {n}] gives the number of vertices reachable in precisely n hops.
IGNeighborhoodSize[graph, All, {min, max}] gives

the number of vertices reachable in between min andmax hops (inclusive).
IGNeighborhoodSize[graph, All, {min, max}, mode] uses

the given mode, "In", "Out" or "All", when finding neighbours in directed graphs.

IGNeighborhoodSize returns the number of vertices reachable within a certain distance range from a given vertex, or

from multiple given vertices.

96 | IGraph/M Documentation

Scale vertices proportionally to the number of their second order neighbours:
In[380]:=

g = IGBarabasiAlbertGame50, 2, DirectedEdges False;

IGVertexMap# &, VertexSize Rescale@IGNeighborhoodSize[#, All, {2}] &, g

Out[381]=

IGDistanceHistogram
In[382]:=

? IGDistanceHistogram

IGDistanceHistogram [graph, binsize] gives a histogram of weighted all-pair
shortest path lengths in graph with the given bin size. In the case of undirected graphs,
path lengths are double counted. Available Method options: {"Dijkstra", "BellmanFord"}.

IGDistanceHistogram [graph, binsize, from] gives a histogram of
weighted shortest path lengths in graph for the given starting vertices and bin size.

IGDistanceHistogram [graph, binsize, from, to] gives a histogram of
weighted shortest path lengths in graph for the given starting and ending vertices and bin size.

IGDistanceHistogram[] computes the weighted shortest path length histogram between the specified start and

end vertex sets. The start and end vertex sets do not need to be the same. Note that if the graph is undirected, path

lengths between s and t will be double counted (from s t and t s) if s and t appear both in the starting and ending

vertex sets.

IGDistanceHistogram[] is useful when the result of IGDistanceMatrix[] (or GraphDistanceMatrix[])

does not fit in memory.

IGAveragePathLength
In[383]:=

? IGAveragePathLength

IGAveragePathLength [graph] returns the average of all-pair shortest path lengths of the graph. Vertex pairs between which
there is no path are excluded. Available Method options: {"Unweighted", "Dijkstra", "BellmanFord", "Johnson"}.

IGAveragePathLength computes the average pairwise distances between vertices.

Available options:

◼Method can take the values "Unweighted", "Dijkstra", "BellmanFord", "Johnson" and Automatic.
Automatic uses "Unweighted" if no edge weights are present, "Dijkstra" if all weights are non-negative and

"Johnson" otherwise.

IGraph/M Documentation | 97

◼"ByComponents" controls how unconnected graphs are handled. If False, Infinity is returned. If True, vertex

pairs between which there is no path are excluded from the calculation.

IGGirth
In[384]:=

? IGGirth

IGGirth[graph] returns the length of the shortest cycle of the
graph. The graph is treated as undirected, self-loops andmulti-edges are ignored.

IGGirth computes the girth of a graph, i.e. the length of its shortest cycle. IGGirth ignores multi-edges and self-loops.
Edge directions and edge weights are also ignored.

In[385]:=

IGGirth 1

2

3

4

5

Out[385]=

3

If the graph has no cycles, ∞ is returned.
In[386]:=

IGGirth@IGShorthand["1-2"]
Out[386]=

∞

IGDiameter and IGFindDiameter
In[387]:=

? IGDiameter

IGDiameter[graph] gives the diameter of graph. Available Method options: {"Unweighted", "Dijkstra"}.

The diameter of a graph is the length of the longest shortest path between any two vertices.

The available options are:

◼Method can take the values "Unweighted", "Dijkstra" or Automatic. "Dijkstra" takes edge weights into

account. Automatic chooses based on whether the graph is weighted.

◼"ByComponents" controls how unconnected graphs are handled. If False, Infinity is returned. If True, the

longest shortest path is returned. In the undirected case, this is the largest diameter of any connected component.
In[388]:=

IGDiameter 1

2

3

4

5

Out[388]=

2

For the null graph, Indeterminate is returned.
In[389]:=

IGDiameter[IGEmptyGraph[]]
Out[389]=

Indeterminate

98 | IGraph/M Documentation

In[390]:=

? IGFindDiameter

IGFindDiameter[graph] returns a longest shortest path in graph, i.e. a shortest path
with length equal to the graph diameter. Available Method options: {"Unweighted", "Dijkstra"}.

In[391]:=

IGFindDiameter 1

2

3

4

5

Out[391]=

{1, 2, 4}

In[392]:=

g = dodecahedral graph GRAPH ["Graph"];

In[393]:=

HighlightGraphg, PathGraph@IGFindDiameter[g],

GraphHighlightStyle "DehighlightFade", PlotTheme "RoyalColor"

Out[393]=

IGEccentricity
In[394]:=

? IGEccentricity

IGEccentricity[graph] returns the eccentricity of all vertices.
IGEccentricity[graph, vertex] returns the eccentricity of the given vertex.
IGEccentricity[graph, {vertex1, vertex2,…}] returns the eccentricity of the given vertices.

The eccentricity of a vertex is the longest shortest path to any other vertex. IGEccentricity computes the unweighted

eccentricity of each vertex within the connected component where it is contained.
In[395]:=

IGEccentricity@CycleGraph[8]
Out[395]=

{4, 4, 4, 4, 4, 4, 4, 4}

Connected components are considered separately.
In[396]:=

IGEccentricityIGDisjointUnion[{CycleGraph[3], CycleGraph[8]}]
Out[396]=

{1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4}

IGraph/M Documentation | 99

IGRadius
In[397]:=

? IGRadius

IGRadius[graph] returns the unweighted graph radius.

The radius of a graph is the smallest eccentricity of any of its vertices, i.e. the eccentricity of the graph center.

IGVoronoiCells
In[398]:=

? IGVoronoiCells

IGVoronoiCells[graph, {v1, v2,…}] returns the sets of vertices closest to each given vertex.

IGVoronoiCells[graph, centers] partitions a graph’s vertices into groups based on which given centre vertex

they are the closest to. Edge weights are considered for the distance calculations.

Available options:

◼"Tiebreaker" sets the function used to decide which cell a vertex should belong to if its distance to several different
centres is equal. The default is to use the first qualifying cell. Possible useful settings are First, Last,
RandomChoice.

In[399]:=

g = PathGraphRange[5], VertexLabels "Name", VertexSize Medium

Out[399]=

1 2 3 4 5

In[400]:=

IGVoronoiCells[g, {2, 4}]
Out[400]=

2 {1, 2, 3}, 4 {4, 5}

In[401]:=

HighlightGraph[g, Values[%]]
Out[401]=

1 2 3 4 5

In the event of a tie, a vertex is added to the first qualifying cell. The tiebreaker function can be changed as below.
In[402]:=

IGVoronoiCellsg, {2, 4}, "Tiebreaker" Last
Out[402]=

2 {1, 2}, 4 {3, 4, 5}

In[403]:=

TableIGVoronoiCellsg, {2, 4}, "Tiebreaker" RandomChoice, {5}
Out[403]=

{2 {1, 2, 3}, 4 {4, 5}, 2 {1, 2}, 4 {3, 4, 5},

2 {1, 2, 3}, 4 {4, 5}, 2 {1, 2, 3}, 4 {4, 5}, 2 {1, 2}, 4 {3, 4, 5}}

100 | IGraph/M Documentation

Find Voronoi cells on a grid.
In[404]:=

g = GridGraph{10, 10}, VertexSize Medium, GraphStyle "BasicBlack";

centers = RandomSampleVertexList[g], 3;

HighlightGraphg,

Append

Subgraph[g, #] & /@ Values@IGVoronoiCells[g, centers],

Style[centers, Black]

,

GraphHighlightStyle "DehighlightHide"

Out[406]=

Edge weights are interpreted as distances.
In[407]:=

g = IGMeshGraph@DelaunayMesh@RandomPointDisk[], 200;

centers = RandomSampleVertexList[g], 3;

HighlightGraphg,

Append

Subgraph[g, #] & /@ Values@IGVoronoiCells[g, centers],

Style[centers, Black]

,

GraphHighlightStyle "DehighlightGray"

Out[409]=

IGraph/M Documentation | 101

IGShortestPathTree
In[410]:=

? IGShortestPathTree

IGShortestPathTree [graph, vertex] give the shortest path tree of graph rooted in vertex.

Experimental: This is experimental functionality that may change in the future.
In[411]:=

g = IGTriangularLattice[4];

In[412]:=

HighlightGraphg, IGShortestPathTree[g, 1], GraphHighlightStyle "Thick"

Out[412]=

Efficiency measures

IGGlobalEfficiency
In[413]:=

? IGGlobalEfficiency

IGGlobalEfficiency[graph] gives the global efficiency of graph.

IGGlobalEfficiency[graph] computes the global efficiency of a graph. The global efficiency is defined as the

average inverse shortest path length between all pairs of vertices,

Eglobal =
1

V(V -1)

u,v

1

duv
,

where duv is the graph distance from vertex u to vertex v and V is the number of vertices. When v is not reachable from u,
1 /duv is taken to be 0.

Available options:

◼DirectedEdges False ignores edge directions when computing shortest path lengths.

Compute the global efficiency of a network …

In[414]:=

g = ExampleData"NetworkGraph", "ProteinInteraction";

IGGlobalEfficiency[g]
Out[415]=

0.0997348

102 | IGraph/M Documentation

… and that of its spanning tree.
In[416]:=

IGGlobalEfficiency@IGSpanningTree[g]
Out[416]=

0.00106384

References

◼ V. Latora and M. Marchiori, Efficient behavior of small-world networks, Phys. Rev. Lett. 87, 198701 (2001).
https://dx.doi.org/10.1103/PhysRevLett.87.198701

IGLocalEfficiency

In[417]:=

? IGLocalEfficiency

IGLocalEfficiency[graph] gives the local efficiency around each vertex of graph.
IGLocalEfficiency[graph, {vertex1, vertex2,…}] gives the local efficiency around the given vertices.
IGLocalEfficiency[graph, All, "Out"] uses outgoing edges to define the neighbourhood in a directed graph.

IGLocalEfficiency[graph] computes the local efficiency around each vertex of a graph. The local efficiency

around a vertex u is defined as the average pairwise inverse shortest path length between the neighbours of u after
excluding u itself from the graph,

Elocal(u) =
1

ku(ku-1)

v,w∈N(u)

1

dvw
,

where ku is the degree of vertex u, N(u) denotes its neighbourhood and dvw is the graph distance from vertex v to vertex w.
If u has less than two neighbours, Elocal(u) is taken to be 0.

Available options:

◼DirectedEdges False ignores edge directions when computing shortest path lengths.

Size the vertices of a graph according to the corresponding local efficiency
In[418]:=

g = ExampleData[{"NetworkGraph", "ZacharyKarateClub"}];

IGVertexMap1.5 # &, VertexSize IGLocalEfficiency, g
Out[419]=

IGraph/M Documentation | 103

https://dx.doi.org/10.1103/PhysRevLett.87.198701

Plot the local efficiency versus the local clustering coefficient.
In[420]:=

ListPlot

TransposeIGLocalClusteringCoefficient[g], IGLocalEfficiency[g],

PlotTheme "Detailed"

Out[420]=

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Compute the local efficiency of a subset of vertices only.
In[421]:=

g = RandomGraph{10, 20}, DirectedEdges True;

IGLocalEfficiency[g, {1, 2, 3}]
Out[422]=

{0.506944, 0.408333, 0.5}

By default, both in- and out-neighbours are considered when determining the neighbourhoods of vertices. We can also

consider only in-neighbours or only out-neighbours.
In[423]:=

IGLocalEfficiency[g, All, "All"],

IGLocalEfficiency[g, All, "In"],

IGLocalEfficiency[g, All, "Out"]

Out[423]=

{{0.506944, 0.408333, 0.5, 0.388889, 0.275, 0.305556, 0.375, 0.336111, 0.493333, 0.35},

{1., 0.625, 0.5, 0.5, 0.25, 0.25, 0.375, 0.1, 0.416667, 0.},

{0.125, 0., 0., 0.25, 0.388889, 0.25, 0., 0.5, 0.520833, 0.35}}

Ignore edge directions when computing shortest paths.
In[424]:=

IGLocalEfficiencyg, DirectedEdges False
Out[424]=

{0.722222, 0.833333, 1., 0.75, 0.561667, 0.5, 0.583333, 0.583333, 0.7, 0.5}

References

◼ I. Vragović, E. Louis, and A. Díaz-Guilera, Efficiency of informational transfer in regular and complex networks, Phys.
Rev. E 71, 1 (2005). https://dx.doi.org/10.1103/PhysRevE.71.036122

IGAverageLocalEfficiency
In[425]:=

? IGAverageLocalEfficiency

IGAverageLocalEfficiency[graph] gives the average local efficiency of graph.
IGAverageLocalEfficiency[graph, "Out"] uses outgoing edges to define the neighbourhood in a directed graph.

IGAverageLocalEfficiency[graph] computes the average local efficiency of a network. See

104 | IGraph/M Documentation

https://dx.doi.org/10.1103/PhysRevE.71.036122

IGLocalEfficiency for a definition of this graph measure.

Plot the decrease in average local efficiency during sequential edge removals.
In[426]:=

g = RandomGraph{30, 60}, DirectedEdges True;

In[427]:=

ListPlot

Table

k, IGAverageLocalEfficiency@GraphVertexList[g], TakeEdgeList[g], k,

{k, EdgeCount[g]}

,

AxesLabel "edge count", "local efficiency"

Out[427]=

10 20 30 40 50 60
edge count

0.05

0.10

0.15

0.20

local efficiency

IGAverageLocalEfficiency simply gives the average of the values returned by IGLocalEfficiency.

In[428]:=

IGAverageLocalEfficiency[g], Mean@IGLocalEfficiency[g]
Out[428]=

{0.210095, 0.210095}

Use only the out-neighbourhood while computing the local efficiency.
In[429]:=

IGAverageLocalEfficiency[g, "Out"]
Out[429]=

0.142476

Bipartite graphs

The vertices of a bipartite graph can be divided into two groups (partitions) such that connections run only between the

two partitions, but never within a single partition.
In[430]:=

? IGBipartite*

IGraphM`

IGBipartiteGameGNM IGBipartiteIncidenceMatrix IGBipartiteQ

IGBipartiteGameGNP IGBipartitePartitions

IGBipartiteIncidenceGraph IGBipartiteProjections

IGraph/M Documentation | 105

IGBipartiteQ
In[431]:=

? IGBipartiteQ

IGBipartiteQ[graph] tests if graph is bipartite.
IGBipartiteQ[graph, {vertices1, vertices2}] verifies that no edges are running between the two given vertex subsets.

Generate a graph and verify that it is bipartite.
In[432]:=

g = IGBipartiteGameGNM[5, 5, 10, VertexLabels "Name"]
Out[432]=

1

2

3

4

5

6

7

8

9

10

In[433]:=

IGBipartiteQ[g]
Out[433]=

True

Verify that no edges run between two disjoint vertex subsets of the graph.
In[434]:=

IGBipartiteQ[g, {{1, 2, 3}, {6, 7, 8}}]
Out[434]=

True

IGBipartitePartitions
In[435]:=

? IGBipartitePartitions

IGBipartitePartitions[graph] partitions the vertices of a bipartite graph.
IGBipartitePartitions[graph, vertex] ensures that the first partition which is returned contains vertex.

Find a bipartite partitioning of a graph.
In[436]:=

g =

1

2

3

4

5

6

7

8

;

106 | IGraph/M Documentation

In[437]:=

IGBipartitePartitions[g]
Out[437]=

{{1, 2, 3, 4}, {5, 6, 7, 8}}

Ensure that the partitions are returned in such an order that the first one contains vertex 5.
In[438]:=

IGBipartitePartitions[g, 5]
Out[438]=

{{5, 6, 7, 8}, {1, 2, 3, 4}}

$Failed is returned for non-bipartite graphs.
In[439]:=

IGBipartitePartitions[CompleteGraph[4]]

IGBipartitePartitions: The graph is not bipartite.

Out[439]=

$Failed

We can use IGPartitionsToMembership or IGKVertexColoring[…, 2] to obtain a partition index for each

vertex.
In[440]:=

IGPartitionsToMembership[g]@IGBipartitePartitions[g]
Out[440]=

{1, 1, 1, 1, 2, 2, 2, 2}

In[441]:=

IGKVertexColoring[g, 2]
Out[441]=

{{1, 1, 1, 1, 2, 2, 2, 2}}

IGBipartiteProjections
In[442]:=

? IGBipartiteProjections

IGBipartiteProjections[graph] gives both bipartite projections
of graph. Multiplicities are returned as edge weights. Edge directions are ignored.

IGBipartiteProjections[graph, {vertices1, vertices2}] returns both bipartite projections according to the specified partitioning.

IGraph/M Documentation | 107

The following bipartite graph described the relationship between diseases and genes.
In[443]:=

g = ExampleData"NetworkGraph", "BipartiteDiseasomeNetwork"

Out[443]=

In[444]:=

parts = Values@GroupBy

ThreadIGVertexProp["Type"][g] VertexList[g],

First Last

;

Construct a disease-disease and gene-gene network from it.
In[445]:=

IGBipartiteProjections[g, parts]
Out[445]=

 ,

IGBipartiteIncidenceMatrix and IGBipartiteIncidenceGraph
In[446]:=

? IGBipartiteIncidenceGraph

IGBipartiteIncidenceGraph[mat] creates a bipartite graph from the given incidence matrix.
IGBipartiteIncidenceGraph[{vertices1, vertices2},

mat] uses vertices1 and vertices2 as the vertex names in the two partitions.

In[447]:=

? IGBipartiteIncidenceMatrix

IGBipartiteIncidenceMatrix[graph] gives the incidence matrix of a bipartite graph.
IGBipartiteIncidenceMatrix[graph, {vertices1, vertices2}] uses the provided vertex partitioning.

108 | IGraph/M Documentation

Compute an incidence matrix. The default partitioning used by IGBipartiteIncidenceMatrix is the one returned

by IGBipartitePartitions.
In[448]:=

g = IGBipartiteGameGNM[5, 5, 10, VertexLabels "Name"]
Out[448]=

1

2

3

4

5

6

7

8

9

10

In[449]:=

bm = IGBipartiteIncidenceMatrix[g];

MatrixFormbm, TableHeadings IGBipartitePartitions[g]

Out[450]//MatrixForm=

6 7 8 9 10
1 1 1 1 1 1
2 0 0 1 0 0
3 0 1 0 0 0
4 0 0 1 1 0
5 0 0 1 0 0

Reconstruct a graph from an incidence matrix.
In[451]:=

IGBipartiteIncidenceGraphbm, VertexLabels "Name", GraphLayout "BipartiteEmbedding"
Out[451]=

1

2

3

4

5

6

7

8

9

10

Compute an incidence matrix using a given partitioning / vertex ordering. It is allowed to pass only a subset of vertices.
In[452]:=

IGBipartiteIncidenceMatrix[g, {{1, 2, 3}, {6, 7, 8}}]
Out[452]=

SparseArray
Specified elements: 5

Dimensions: {3, 3}

IGraph/M Documentation | 109

Reconstruct the bipartite graph while specifying vertex names.
In[453]:=

IGBipartiteIncidenceGraph{a, b, c}, d, e, f, %, VertexLabels "Name"

Out[453]=

a

bc

d e f

Similarity measures

The functions in this section characterize the similarity of vertex pairs within a graph.

IGBibliographicCoupling
In[454]:=

? IGBibliographicCoupling

IGBibliographicCoupling[graph] gives the bibliographic coupling between all vertex pairs in graph. The
bibliographic coupling of two vertices is the number of vertices they both connect to (with directed edges).

IGBibliographicCoupling[graph, vertex] gives the bibliographic coupling of vertex with all other vertices in graph.
IGBibliographicCoupling[graph, {vertex1, vertex2,…}] gives

the bibliographic coupling of vertex1, vertex2,…with all other vertices in graph.

The bibliographic coupling of two vertices in a directed graph is the number of other vertices they both connect to. The

bibliographic coupling matrix can also be obtained using am.am - DiagonalMatrix@VertexInDegree[g], where

am is the adjacency matrix of the graph g.

In[455]:=

? IGStaticPowerLawGame

IGStaticPowerLawGame [n, m, exp] generates a random graph with n
vertices andm edges, having a power-law degree distribution with the given exponent.

IGStaticPowerLawGame [n, m, expOut, expIn] generates a random directed graph with n
vertices andm edges, having power-law in- and out-degree distributions with the given exponents.

110 | IGraph/M Documentation

Create a random graph and compute its bibliographic coupling matrix.
In[456]:=

g = IGStaticPowerLawGame10, 25, 2, 4,

GraphLayout "CircularEmbedding", GraphStyle "BasicBlack"

Out[456]=

In[457]:=

cc = IGBibliographicCoupling[g];

MatrixFormcc, TableHeadings VertexList[g], VertexList[g]

Out[458]//MatrixForm=

1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 1 1 1 1 1
2 0 0 0 0 1 0 1 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 1 0 0 0 0 1 0 0 1
6 1 0 0 0 0 0 0 0 0 0
7 1 1 0 0 1 0 0 2 2 2
8 1 0 0 0 0 0 2 0 4 3
9 1 0 0 0 0 0 2 4 0 4
10 1 0 0 0 1 0 2 3 4 0

Construct the weighted graph corresponding to the bibliographic coupling of vertices and visualize it.
In[459]:=

ccg =

IGWeightedAdjacencyGraphcc, VertexCoordinates GraphEmbedding[g], GraphStyle "ThickEdge" //

IGEdgeMapThickness[0.02 #] &, EdgeStyle IGEdgePropEdgeWeight

Out[459]=

IGraph/M Documentation | 111

Overlay the bibliographic coupling graph with the original directed graph.
In[460]:=

Show[ccg, g]
Out[460]=

IGCocitationCoupling
In[461]:=

? IGCocitationCoupling

IGCocitationCoupling[graph] gives the cocitation coupling between all vertex pairs in graph. The cocitation
coupling of two vertices is the number of vertices connecting to both of them (with directed edges).

IGCocitationCoupling[graph, vertex] gives the cocitation coupling of vertex with all other vertices in graph.
IGCocitationCoupling[graph, {vertex1, vertex2,…}] gives

the cocitation coupling of vertex1, vertex2,…with all other vertices in graph.

The co-citation coupling of two vertices in a directed graph is the number of other vertices that connect to both of them.
The co-citation coupling matrix can also be obtained using am.am - DiagonalMatrix@VertexOutDegree[g],

where am is the adjacency matrix of the graph g.

IGDiceSimilarity
In[462]:=

? IGDiceSimilarity

IGDiceSimilarity[graph] gives the Dice similarity between all pairs of vertices.
IGDiceSimilarity[graph, {vertex1, vertex2,…}] gives the Dice similarity between the given vertices.

The Dice similarity coefficient of two vertices is twice the number of common neighbours divided by the sum of the

degrees of the vertices. For directed graphs, out-neighbours are considered. Edge multiplicities are not taken into

account.

The available options are:

◼SelfLoops True will include self-loops in the calculation of the similarity score.

112 | IGraph/M Documentation

IGJaccardSimilarity
In[463]:=

? IGJaccardSimilarity

IGJaccardSimilarity[graph] gives the Jaccard similarity between all pairs of vertices.
IGJaccardSimilarity[graph, {vertex1, vertex2,…}] gives the Jaccard similarity between the given vertices.

The Jaccard similarity coefficient of two vertices is the number of common neighbours divided by the number of vertices

that are neighbours of at least one of the two vertices being considered. For directed graphs, out-neighbours are consid-
ered. Edge multiplicities are not taken into account.

The available options are:

◼SelfLoops True will include self-loops in the calculation of the similarity score.

Construct and visualize a weighted graph of Jaccard similarities between vertices of an animal social network:
In[464]:=

g = ExampleData"NetworkGraph", "DolphinSocialNetwork"
Out[464]=

In[465]:=

IGWeightedAdjacencyGraph

IGZeroDiagonal@IGJaccardSimilarity[g], VertexCoordinates GraphEmbedding[g] //

IGEdgeMapGrayLevel[0, #] &, EdgeStyle IGEdgePropEdgeWeight

Out[465]=

Compare it to the inverse log-weighted similarity:
In[466]:=

IGWeightedAdjacencyGraph

Rescale@IGInverseLogWeightedSimilarity[g], VertexCoordinates GraphEmbedding[g] //

IGEdgeMapGrayLevel[0, #] &, EdgeStyle IGEdgePropEdgeWeight

Out[466]=

IGraph/M Documentation | 113

IGInverseLogWeightedSimilarity
In[467]:=

? IGInverseLogWeightedSimilarity

IGInverseLogWeightedSimilarity[graph] gives the inverse log-weighted similarity between all pairs of vertices.
IGInverseLogWeightedSimilarity[graph, vertex] gives the inverse log-weighted similarity of vertex to all other vertices.
IGInverseLogWeightedSimilarity[graph, {vertex1,

vertex2,…}] gives the inverse log-weighted similarity between the given vertices.

The inverse log-weighted similarity of two vertices is the number of their common neighbours, weighted by the inverse

natural logarithm of the neighbours’ degrees. It is also known as the Adamic–Adar index. It is based on the assumption

that two vertices should be considered more similar if they share a low-degree common neighbour, since high-degree

common neighbours are more likely to appear even by pure chance.

Formally, the similarity of vertices u and v is

A(u, v) =

w∈(u)⋂(v)

1

ln dw
,

where (u) denotes the neighbourhood of vertex u and dw denotes the degree of vertex w.

Isolated vertices will have zero similarity to any other vertex. Self-similarities are not calculated.

In directed graphs, the out-neighbours of each vertex are considered, weighted by the inverse logarithm of their in-
degrees.

References

◼ Lada A. Adamic and Eytan Adar: Friends and neighbors on the Web, Social Networks, 25(3):211-230, 2003.
https://doi.org/10.1016/S0378-8733(03)00009-1

Connectivity and graph components

IGConnectedQ and IGWeaklyConnectedQ
In[468]:=

? IGConnectedQ

IGConnectedQ[graph] tests if graph is strongly connected.

In[469]:=

? IGWeaklyConnectedQ

IGWeaklyConnectedQ[graph] tests if graph is weakly connected.

IGConnectedQ checks if the graph is (strongly) connected. It is equivalent to ConnectedGraphQ.
IGWeaklyConnectedQ check if a directed graph is weakly connected. It is equivalent to WeaklyConnectedGraphQ.
Both of these functions use the implementation from the core igraph library, and will always be consistent with it for edge

cases such as the null graph.

114 | IGraph/M Documentation

https://doi.org/10.1016/S0378-8733(03)00009-1

This graph is connected.
In[470]:=

IGConnectedQ

Out[470]=

True

This directed graph is only weakly connected.
In[471]:=

IGConnectedQ

Out[471]=

False

In[472]:=

IGWeaklyConnectedQ

Out[472]=

True

The null graph is considered disconnected by convention.
In[473]:=

IGConnectedQ@IGEmptyGraph[0]
Out[473]=

False

IGConnectedComponentSizes and IGWeaklyConnectedComponentSizes
In[474]:=

? IGConnectedComponentSizes

IGConnectedComponentSizes[graph] gives the sizes of graph's connected components in decreasing order.

In[475]:=

? IGWeaklyConnectedComponentSizes

IGWeaklyConnectedComponentSizes[graph] gives the sizes of graph's weakly connected components in decreasing order.

IGWeaklyConnectedComponentsSizes and IGConnectedComponentSizes return the sizes of the graph’s

weakly or strongly connected components in decreasing order.

In large graphs, these functions will be faster than the equivalent Length /@ ConnectedComponents[g].

IGraph/M Documentation | 115

The emergence of a giant component as the number of edges in a random graph increases.
In[476]:=

Table

m, First@IGConnectedComponentSizes@RandomGraph[{1000, m}],

{m, 5, 2000, 5}

 // ListPlot
Out[476]=

500 1000 1500 2000

200

400

600

800

1000

The number of weakly and strongly connected components versus the number of edges in a random directed graph.
In[477]:=

Table

Withg = RandomGraph{1000, m}, DirectedEdges True,

m, Length@IGWeaklyConnectedComponentSizes[g], m, Length@IGConnectedComponentSizes[g]

,

{m, 5, 3000, 5}

 // Transpose // ListPlot
Out[477]=

500 1000 1500 2000 2500 3000

200

400

600

800

1000

IGFindMinimumCuts
In[478]:=

? IGFindMinimumCuts

IGFindMinimumCuts[graph, s, t] gives all minimum edge cuts that disconnect s and t in a weighted graph.

IGFindMinimalCuts[g, s, t] finds all smallest-weight (i.e. minimum) edge cuts that disconnect vertex t from

vertex s.
In[479]:=

g = ExampleData"NetworkGraph", "MetabolicNetworkAeropyrumPernix";

IGFindMinimumCuts[g, 30, 160]
Out[480]=

{{30 1000177, 30 1000178}, {30 1000178, 1000177 10}, {1000080 160, 1000092 160}}

116 | IGraph/M Documentation

Visualize all minimum cuts between two vertices in a random cubic graph.
In[481]:=

g = IGKRegularGame[20, 3];

HighlightGraphg, Join[#, {1, 20}], GraphHighlightStyle "Dotted", VertexSize Large & /@

IGFindMinimumCuts[g, 1, 20]
Out[482]=

 ,

Warning: IGFindMinimumCuts takes edge weights into account, but it is only safe to use with integer weights. If the

weights are not integers, then numerical roundoff errors may prevent the function from detecting that two cuts have the

same total weight.

Create an integer-weighted graph with more than one minimum cut between vertices 1 and 10:
In[483]:=

g = IGTryUntilLength@IGFindMinimumCuts[#, 1, 10] > 2 &

RandomGraph{10, 30}, DirectedEdges True, EdgeWeight RandomInteger[{1, 10}, 30]

Out[483]=

In[484]:=

IGFindMinimumCuts[g, 1, 10]
Out[484]=

{{1 3, 1 6, 1 7, 1 8}, {1 3, 2 3, 2 10, 4 10}, {2 10, 3 10, 4 10}}

Multiplying the weights by 0.1 causes IGFindMinimumCuts to return fewer results because some of the weights are

no longer exactly representable in binary:
In[485]:=

IGFindMinimumCutsIGEdgeMap0.1 # &, EdgeWeight, g, 1, 10
Out[485]=

{{1 3, 1 6, 1 7, 1 8}}

If only a single minimum cut is needed, use IGMinimumCut:
In[486]:=

IGMinimumCut[g, 1, 10]
Out[486]=

{2 10, 3 10, 4 10}

The size (total weight) of the cut can be obtained with IGMinimumCutValue:
In[487]:=

IGMinimumCutValue[g, 1, 10]
Out[487]=

14.

IGraph/M Documentation | 117

References

◼ J. S. Provan and D. R. Shier: A Paradigm for listing (s,t)-cuts in graphs, Algorithmica 15, 351--372, 1996.

IGFindMinimalCuts
In[488]:=

? IGFindMinimalCuts

IGFindMinimalCuts[graph, s, t] gives all minimal edge cuts that disconnect s and t in graph.

IGFindMinimalCuts[g, s, t] finds all unweighted minimal edge cuts that disconnect vertex t from vertex s.

In[489]:=

g =

1

2

3

4

5

6

7

8

9

10

;

In[490]:=

IGFindMinimalCuts[g, 1, 10]
Out[490]=

{{1 2, 1 5, 1 10}, {1 2, 1 10, 5 10}, {1 5, 1 10, 2 3, 2 5},

{1 10, 2 3, 5 10}, {1 5, 1 10, 2 5, 3 4, 3 5}, {1 10, 3 4, 5 10},

{1 5, 1 10, 2 5, 3 5, 4 10}, {1 10, 4 10, 5 10}}

The set of all minimum cuts is a subset of the minimal ones.
In[491]:=

IGFindMinimumCuts[g, 1, 10]
Out[491]=

{{1 2, 1 5, 1 10}, {1 2, 1 10, 5 10},

{1 10, 2 3, 5 10}, {1 10, 3 4, 5 10}, {1 10, 4 10, 5 10}}

In[492]:=

SubsetQ[%%, %]

Out[492]=

True

118 | IGraph/M Documentation

https://doi.org/10.1007/BF01961544

Visualize all minimal cuts between two vertices, from smallest to largest, in an undirected graph.
In[493]:=

g = IGGiantComponent@RandomGraph[{8, 12}];

HighlightGraphg, Join[#, {1, 8}], GraphHighlightStyle "Dashed", VertexSize Medium & /@

SortBy[Length]@IGFindMinimalCuts[g, 1, 8]
Out[494]=

 , , , , ,

, , , , ,

, , , , ,

, , , ,

References

◼ J. S. Provan and D. R. Shier: A Paradigm for listing (s,t)-cuts in graphs, Algorithmica 15, 351--372, 1996.

Vertex separators

A vertex separator is a set of vertices whose removal disconnects the graph.
In[495]:=

? IGMinimalSeparators

IGMinimalSeparators[graph] gives all minimal separator vertex sets. A
vertex set is a separator if its removal disconnects the graph. Edge directions are ignored.

In[496]:=

? IGMinimumSeparators

IGMinimumSeparators[graph] gives all separator vertex sets of minimum size.
A vertex set is a separator if its removal disconnects the graph. Edge directions are ignored.

In[497]:=

? IGVertexSeparatorQ

IGVertexSeparatorQ [graph, {vertex1, vertex2,…}] tests
if the given set of vertices disconnects the graph. Edge directions are ignored.

In[498]:=

? IGMinimalVertexSeparatorQ

IGMinimalVertexSeparatorQ [graph, {vertex1, vertex2,…}]

tests if the given vertex set is a minimal separator. Edge directions are ignored.

IGraph/M Documentation | 119

https://doi.org/10.1007/BF01961544

In[499]:=

g = ExampleData"NetworkGraph", "Friendship"

Out[499]=

Anna

Rose

Nora

Ben

Larry

Carol
Rudy

Linda

James

In[500]:=

separators = IGMinimumSeparators[g]
Out[500]=

{{Anna, Rose}, {Larry, Rudy}, {Larry, James}, {Rudy, Linda},

{Anna, Nora}, {Anna, Ben}, {Anna, Larry}, {Anna, Linda}, {Anna, James}}

Removing any of these vertex sets will disconnect the graph:
In[501]:=

VertexDelete[g, #] & /@ separators
Out[501]=

Nora

Ben

Larry

Carol Rudy

Linda

James

, Anna

Rose
Nora

Ben

Carol

Linda

James

, Anna

Rose
Nora

Ben

Carol Rudy

Linda

, Anna

Rose
Nora

Ben

Larry

Carol
James

,

Rose

Ben

Larry

Carol Rudy

Linda

James

,

Rose
Nora Larry

Carol Rudy

Linda

James

,

Rose
Nora

Ben

Carol Rudy

Linda

James

,

Rose
Nora

Ben

Larry

Carol Rudy James

,

Rose
Nora

Ben

Larry

Carol Rudy

Linda

In[502]:=

IGVertexSeparatorQ[g, #] & /@ separators
Out[502]=

{True, True, True, True, True, True, True, True, True}

In[503]:=

IGMinimalVertexSeparatorQ[g, #] & /@ separators
Out[503]=

{True, True, True, True, True, True, True, True, True}

Removing Anna, Nora and Larry also disconnects the graph, thus this vertex set is a separator:
In[504]:=

IGVertexSeparatorQ[g, {"Anna", "Nora", "Larry"}]
Out[504]=

True

But it is not minimal:
In[505]:=

IGMinimalVertexSeparatorQ[g, {"Anna", "Nora", "Larry"}]
Out[505]=

False

IGMinimumSeparators returns only those vertex separators which are of the smallest possible size in the graph.
IGMinimalSeparators returns all separators which cannot be made smaller by removing a vertex from them. The

120 | IGraph/M Documentation

former is a subset of the latter.
In[506]:=

g = 0

1
2

3 4

5
6

;

In[507]:=

IGMinimalSeparators[g]
Out[507]=

{{1, 6}, {0, 2}, {1, 3, 4}, {2, 5}, {3, 4, 6}, {0, 5}, {2, 6}, {1, 5}, {0, 3, 4}}

In[508]:=

IGMinimumSeparators[g]
Out[508]=

{{2, 5}, {1, 5}, {1, 6}, {0, 5}, {2, 6}, {0, 2}}

In[509]:=

SubsetQ[%%, %]

Out[509]=

True

IGEdgeConnectivity
In[510]:=

? IGEdgeConnectivity

IGEdgeConnectivity[graph] gives the smallest number of edges whose deletion disconnects graph.
IGEdgeConnectivity[graph, s, t] gives the smallest number of edges whose deletion disconnects vertices s and t in graph.

IGEdgeConnectivity ignores edge weights. To take edge weights into account, use IGMinimumCutValue instead.

Compute the edge connectivity of the dodecahedral graph.
In[511]:=

IGEdgeConnectivity[GraphData["DodecahedralGraph"]]
Out[511]=

3

The edge connectivity of the singleton graph is returned as 0.
In[512]:=

IGEdgeConnectivity[IGEmptyGraph[1]]
Out[512]=

0

IGVertexConnectivity
In[513]:=

? IGVertexConnectivity

IGVertexConnectivity[graph] gives the smallest number of vertices whose deletion disconnects graph.
IGVertexConnectivity[graph, s, t] gives the smallest

number of vertices whose deletion disconnects vertices s and t in graph.

IGraph/M Documentation | 121

According to Steinitz’s theorem, the skeleton of every convex polyhedron is a 3-vertex-connected planar graph.
In[514]:=

g = GraphData["DodecahedralGraph"]
Out[514]=

In[515]:=

IGVertexConnectivity[g]
Out[515]=

3

To find the specific vertex sets that disconnect the graph, use IGMinimumSeparators or IGMinimalSeparators.
In[516]:=

IGMinimumSeparators[g]
Out[516]=

{{14, 15, 16}, {5, 6, 13}, {7, 14, 19}, {8, 15, 20}, {2, 11, 19}, {2, 12, 20},

{3, 11, 16}, {4, 12, 16}, {10, 14, 17}, {9, 15, 18}, {5, 7, 12}, {6, 8, 11}, {2, 17, 18},

{9, 13, 19}, {10, 13, 20}, {3, 5, 17}, {4, 6, 18}, {1, 3, 9}, {1, 4, 10}, {1, 7, 8}}

The vertex connectivity of the singleton graph is returned as 0.
In[517]:=

IGVertexConnectivity[IGEmptyGraph[1]]
Out[517]=

0

IGBiconnectedQ
In[518]:=

? IGBiconnectedQ

IGBiconnectedQ[graph] tests if graph is biconnected.

IGBiconnectedQ checks if a graph is biconnected. Edge directions are ignored.
In[519]:=

IGBiconnectedQ

Out[519]=

False

122 | IGraph/M Documentation

Since IGBiconnectedComponents does not return any isolated vertices,
Length@IGBiconnectedComponents[g] 1 cannot be used to check if a graph is biconnected. Use

IGBiconnectedQ instead.
In[520]:=

IGBiconnectedComponents

Out[520]=

{{4, 3, 2, 1}}

The singleton graph is not considered to be biconnected, but the two-vertex complete graph is.
In[521]:=

TableIGBiconnectedQ@CompleteGraph[k], {k, 1, 2}

Out[521]=

{False, True}

IGBiconnectedComponents and IGBiconnectedEdgeComponents
In[522]:=

? IGBiconnectedComponents

IGBiconnectedComponents[graph] gives the vertices of the maximal biconnected subgraphs of graph. A graph is
biconnected if the removal of any single vertex does not disconnect it. Isolated vertices are not returned.

In[523]:=

? IGBiconnectedEdgeComponents

IGBiconnectedEdgeComponents [graph] gives the edges of the maximal biconnected
subgraphs of graph. A graph is biconnected if the removal of any single vertex does not disconnect it.

IGBiconnectedCompoments returns the vertices of the maximal biconnected components of the graph.
IGBiconnectedEdgeComponents returns the edges of the components. Edge directions are ignored and isolated

vertices are excluded.

IGBiconnectedComponents is equivalent to KVertexConnectedComponents[…, 2], except that isolated

vertices are not returned as individual components.

The articulation vertices will be part of more than a single component, thus the biconnected components are not disjoint
subsets of the vertex set.

In[524]:=

IGBiconnectedComponents
1

2

3

4

5

Out[524]=

{{3, 2, 1}, {4, 1}}

IGraph/M Documentation | 123

However, each edge is part of precisely one biconnected components.
In[525]:=

IGBiconnectedEdgeComponents
1

2

3

4

5

Out[525]=

{{1 3, 2 3, 1 2}, {1 4}}

Thus, visualizing biconnected components is best done by colouring the edges, not the vertices.
In[526]:=

g = ;

In[527]:=

HighlightGraphg, IGBiconnectedEdgeComponents[g], GraphStyle "ThickEdge"

Out[527]=

IGArticulationPoints
In[528]:=

? IGArticulationPoints

IGArticulationPoints[graph] gives the articulation points of graph. A vertex is an articulation
point if its removal increases the number of (weakly) connected components in the graph.

IGArticulationPoints finds vertices whose removal increases the number of (weakly) connected components in

the graph. Edge directions are ignored.
In[529]:=

g = Graph{1 2, 2 3, 3 1, 3 4, 4 5, 5 6, 6 4},

DirectedEdges False, VertexLabels Automatic
Out[529]=

1

2

34

5

6

In[530]:=

IGArticulationPoints[g]
Out[530]=

{4, 3}

124 | IGraph/M Documentation

In[531]:=

VertexDelete[g, #] & /@ %

Out[531]=

1

23

56

,

12

4

56

Articulation points are also size-1 separators.
In[532]:=

IGMinimumSeparators[g]
Out[532]=

{{4}, {3}}

Highlight the articulation points of a cactus graph.
In[533]:=

g =
1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

;

In[534]:=

HighlightGraphg, IGArticulationPoints[g]

Out[534]=

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

IGraph/M Documentation | 125

Compute the block-cut tree of a connected graph. The blocks are the biconnected components. Together with the articula-
tion vertices they form a bipartite graph, specifically a tree.

In[535]:=

RelationGraph

MemberQ,

JoinIGBiconnectedComponents[g], IGArticulationPoints[g],

DirectedEdges False,

GraphStyle "ClassicDiagram",

VertexSize {3, 1} / 7, VertexLabelStyle 8

Out[535]=

{7, 6, 5}{15, 14, 12} {17, 16, 12} {18, 11}

{13, 12, 11, 10}

{10, 8} {9, 8, 4}

{5, 4, 3, 2, 1}

512 11

10

8

4

IGBridges
In[536]:=

? IGBridges

IGBridges[graph] gives the bridges of graph. A bridge is an edge
whose removal increases the number of (weakly) connected components in the graph.

A bridge is an edge whose removal disconnects the graph (or increases the number of connected components if the graph

was already disconnected). Edge directions are ignored.
In[537]:=

IGShorthand["1-2-3-1-4-5-6-4"]
Out[537]=

1

2

3

4

5

6

In[538]:=

IGBridges[%]
Out[538]=

{1 4}

126 | IGraph/M Documentation

Highlight bridges in a network.
In[539]:=

g = ExampleData"NetworkGraph", "FlorentineFamilies";

HighlightGraphg, IGBridges[g]

Out[540]=

Acciaiuoli

Medici

Castellani

Peruzzi

Strozzi

Barbadori

Ridolfi

Tornabuoni

Albizzi

Salviati

Pazzi

Bischeri

Guadagni

Ginori
Lamberteschi

IGSourceVertexList and IGSinkVertexList
In[541]:=

? IGSourceVertexList

IGSourceVertexList [graph] gives the list of vertices with no incoming connections.

In[542]:=

? IGSinkVertexList

IGSinkVertexList[graph] gives the list of vertices with no outgoing connections.

Find and highlight the source and sink vertices of a random acyclic graph.
In[543]:=

g = DirectedGraphRandomGraph[{10, 20}], "Acyclic",

VertexLabels "Name", VertexSize Large, EdgeStyle Gray

Out[543]=

1 2

3

4

5

6

78

9 10

In[544]:=

IGSourceVertexList[g]
Out[544]=

{1, 2}

In[545]:=

IGSinkVertexList[g]
Out[545]=

{9, 10}

IGraph/M Documentation | 127

In[546]:=

HighlightGraphg, IGSourceVertexList[g], IGSinkVertexList[g]

Out[546]=

1 2

3

4

5

6

78

9 10

Undirected graphs have neither source nor sink vertices because undirected edges are counted as bidirectional.
In[547]:=

IGSourceVertexList

Out[547]=

{}

The exception is isolated vertices, which are counted both as sources and sinks.
In[548]:=

ThroughIGSourceVertexList, IGSinkVertexList@Graph[{1, 2}, {}]

Out[548]=

{{1, 2}, {1, 2}}

These are merely convenience functions that can be implemented straightforwardly as

In[549]:=

PickVertexList[g], VertexOutDegree[g], 0
Out[549]=

{9, 10}

IGIsolatedVertexList
In[550]:=

? IGIsolatedVertexList

IGIsolatedVertexList [graph] gives the list of isolated vertices.

IGIsolatedVertexList returns the vertices which form their own weakly connected components. This includes

vertices with no connections, as well as vertices with only self-loops.
In[551]:=

IGIsolatedVertexList

1

2

3

4

6

5

Out[551]=

{1, 5}

128 | IGraph/M Documentation

IGGiantComponent
In[552]:=

? IGGiantComponent

IGGiantComponent[graph] gives the largest weakly connected component of graph.

IGGiantComponent is a convenience function that returns the largest weakly connected component of graph. If there

are multiple components of largest size, there is no guarantee about which one would be returned. If this is a concern, use

WeaklyConnectedComponents or WeaklyConnectedGraphComponents instead.
In[553]:=

g = RandomGraph[{200, 200}];

HighlightGraph

g,

IGGiantComponent[g]

 // IGLayoutFruchtermanReingold

Out[554]=

IGGiantComponent takes all standard graph options.
In[555]:=

IGGiantComponentg, GraphStyle "BasicGreen", GraphLayout "SpringEmbedding"
Out[555]=

IGraph/M Documentation | 129

Size of the giant component of a random subgraph of a grid graph.
In[556]:=

g = IGSquareLattice{30, 30}, "Periodic" True;

Table

k, VertexCount@IGGiantComponent@Subgraphg, RandomSampleVertexList[g], k,

{k, 1, VertexCount[g], 1}

 // ListPlot
Out[557]=

200 400 600 800

200

400

600

800

IGPercolationCurve
In[558]:=

? IGPercolationCurve

IGPercolationCurve[graph] gives a percolation curve corresponding
to random edge removal, as {meanDegree, largestComponentFraction } pairs.

IGPercolationCurve[edges] gives the percolation curve when edges are added in the specified order.
IGPercolationCurve[edges, n] assumes that there are n vertices.

Experimental: This is experimental functionality that may change in the future.

IGPercolationCurve computes the percolation curve for a sequence of edge additions (interpretable as edge

removals in reverse order). The ith element of the result is the mean degree and the fraction of vertices within the largest
component before adding the ith edge.

IGPercolationCurve[graph] is equivalent to

IGPercolationCurve[RandomSample@EdgeList[graph], VertexCount[graph]].

Plot the averaged percolation curve of a grid graph over many random edge removals.
In[559]:=

ListLinePlot@Mean@TableIGPercolationCurve@GridGraph[{50, 50}], {100}

Out[559]=

1 2 3 4

0.2

0.4

0.6

0.8

1.0

Percolation curve for a random geometric graph when edges are removed in order of decreasing or increasing

betweenness.
In[560]:=

g = IGGeometricGame[500, 0.1];

edgeOrder = EdgeList[g]Ordering@IGEdgeBetweenness[g];

130 | IGraph/M Documentation

In[562]:=

ListLinePlotIGPercolationCurve /@ {edgeOrder, Reverse[edgeOrder]},

PlotLegends "decreasing betweenness", "increasing betweenness",

FrameLabel "mean degree", "largest component fraction",

Frame True, PlotRange All

Out[562]=

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

mean degree

la
rg
es
tc
om
po
ne
nt
fr
ac
tio
n

decreasing betweenness

increasing betweenness

IGPercolationCurve also accepts a list of pairs in addition to a list of edge expressions.
In[563]:=

IGPercolationCurve@RandomInteger[{1, 10}, {20, 2}]
Out[563]=

{{0., 0.1}, {0., 0.2}, {0.2, 0.2}, {0.4, 0.2}, {0.6, 0.2}, {0.8, 0.3},

{1., 0.4}, {1.2, 0.4}, {1.4, 0.6}, {1.6, 0.7}, {1.8, 0.7}, {2., 0.9}, {2.2, 0.9},

{2.4, 1.}, {2.6, 1.}, {2.8, 1.}, {3., 1.}, {3.2, 1.}, {3.4, 1.}, {3.6, 1.}, {3.8, 1.}}

IGPercolationCurve works efficiently on large networks.
In[564]:=

g = ExampleData"NetworkGraph", "WorldWideWeb";

EdgeCount[g]
Out[565]=

1497134

In[566]:=

ListLinePlotIGPercolationCurve[g], MaxPlotPoints 1000
Out[566]=

2 4 6 8

0.2

0.4

0.6

0.8

1.0

Trees

A tree is a connected graph that contains no undirected cycles.

IGraph/M Documentation | 131

IGTreeQ
In[567]:=

? IGTreeQ

IGTreeQ[graph] tests if graph is a tree or out-tree.
IGTreeQ[graph, "Out"] tests if graph is an out-tree (arborescence).
IGTreeQ[graph, "In"] tests if graph is an in-tree (anti-arborescence).
IGTreeQ[graph, "All"] ignores edge directions during the test.

IGTreeQ checks if a graph is a tree. An undirected tree is a connected graph with no cycles. A directed tree is similar,
with its edges oriented either away from a root vertex (out-tree or arborescence) or towards a root vertex (in-tree or anti-
arborescence).

In[568]:=

IGTreeQ

Out[568]=

True

In[569]:=

IGTreeQ

Out[569]=

False

By convention, the null graph is not a tree.
In[570]:=

IGTreeQ[IGEmptyGraph[0]]
Out[570]=

False

This is an out-tree.
In[571]:=

IGTreeQ

Out[571]=

True

It is not also an in-tree.
In[572]:=

IGTreeQ , "In"

Out[572]=

False

132 | IGraph/M Documentation

It becomes an in-tree if we reverse its edges.
In[573]:=

IGTreeQReverseGraph , "In"

Out[573]=

True

This graph is neither an out-tree nor an in-tree.
In[574]:=

IGTreeQ

Out[574]=

False

However, it becomes a tree if we ignore edge directions.
In[575]:=

IGTreeQ , "All"

Out[575]=

True

IGForestQ
In[576]:=

? IGForestQ

IGForestQ[graph] tests if graph is a forest of trees or out-trees.
IGForestQ[graph, "Out"] tests if graph is a forest of out-trees (arborescences).
IGForestQ[graph, "In"] tests if graph is a forest of in-trees (anti-arborescences).
IGForestQ[graph, "All"] ignores edge directions during the test.

IGForestQ is a convenience function that tests if all connected components of a graph are trees.

This graph is not a tree, but it is a forest.
In[577]:=

Through{IGTreeQ, IGForestQ}

Out[577]=

{False, True}

By convention, the null graph is not a tree, but it is a forest.
In[578]:=

{IGTreeQ[IGEmptyGraph[0]], IGForestQ[IGEmptyGraph[0]]}
Out[578]=

{False, True}

IGraph/M Documentation | 133

Use the second argument to test for forests of out-trees or in-trees. By default, directed graphs are checked to be out-
forests.

In[579]:=

g = IGShorthand["1->2<-3, 4<-5->6"]
Out[579]=

1

2

3

4

5

6

In[580]:=

{IGForestQ[g], IGForestQ[g, "Out"], IGForestQ[g, "In"], IGForestQ[g, "All"]}
Out[580]=

{False, False, False, True}

IGStrahlerNumber
In[581]:=

? IGStrahlerNumber

IGStrahlerNumber[tree] gives the Horton–Strahler number of each vertex in a directed out-tree.

134 | IGraph/M Documentation

IGStrahlerNumber computes the Horton–Strahler index of each vertex in a rooted tree. The tree must be directed—
this is how the root is encoded. The Horton–Strahler index of the tree itself is the index of the root, i.e. the largest returned

index. This measure is also called stream order, as it was originally used to characterize river networks.
In[582]:=

tree = IGTreeGame30, DirectedEdges True, GraphLayout "LayeredDigraphEmbedding"
Out[582]=

IGraph/M Documentation | 135

In[583]:=

IGVertexMap[# &, VertexLabels IGStrahlerNumber, tree]
Out[583]=

9

5

4

1

12

7

1

3

1

2

6

2

1

2

2

1

4

2
1

1

10

7

1

3

8

1

1

6

5

11

To get the Horton–Strahler number of the tree, find the maximal element.
In[584]:=

Max@IGStrahlerNumber[tree]
Out[584]=

12

IGStrahlerNumber requires a directed (i.e. rooted) tree as input.
In[585]:=

IGStrahlerNumber 1

2

3

4

5

6

7 8

9

10

IGraphM: strahlerNumber: the graph is not a directed out-tree.

Out[585]=

$Failed

Orient undirected trees, effectively specifying a root vertex, before passing them to IGStrahlerNumber.
In[586]:=

IGStrahlerNumber@IGOrientTree 1

2

3

4

5

6

7 8

9

10

, 5

Out[586]=

{5, 4, 3, 1, 2, 2, 1, 1, 1, 1}

136 | IGraph/M Documentation

IGTreelikeComponents
In[587]:=

? IGTreelikeComponents

IGTreelikeComponents [graph] returns the vertices that make up tree-like components.

IGTreelikeComponents finds the tree-like components of an undirected graph by repeatedly identifying and removing

degree-1 vertices. Vertices in the tree-like components are not part of any undirected cycle, nor are they on a path connect-
ing vertices that belong to a cycle.

In[588]:=

g = RandomGraph[{100, 100}];

HighlightGraph

g,

IGTreelikeComponents[g]

 // IGLayoutFruchtermanReingold

Out[589]=

Highlight both the edges and vertices of tree-like components.
In[590]:=

g = IGGiantComponent@RandomGraph[{50, 50}];

HighlightGraph

g,

Join

Union @@ IncidenceList[g, #] & /@ IGTreelikeComponents[g],

IGTreelikeComponents[g]

Out[591]=

IGraph/M Documentation | 137

In[592]:=

IGLayoutFruchtermanReingold[%]
Out[592]=

Remove tree-like components.
In[593]:=

VertexDeleteg, IGTreelikeComponents[g]
Out[593]=

Vertices incident to multi-edges or loop-edges are not part of tree-like components.
In[594]:=

IGTreelikeComponents

Out[594]=

{1}

IGFromPrufer
In[595]:=

? IGFromPrufer

IGFromPrufer[sequence] constructs a tree from a Prüfer sequence.

IGToPrufer
In[596]:=

? IGToPrufer

IGToPrufer [tree] gives the Prüfer sequence of a tree.

Spanning trees

A spanning tree of a graph is a subgraph that is a tree and contains all the graph’s vertices.

138 | IGraph/M Documentation

IGSpanningTree
In[597]:=

? IGSpanningTree

IGSpanningTree [graph] gives a minimum spanning tree of graph. Edge
directions are ignored. Edge weights are taken into account and are preserved in the tree.

In[598]:=

IGSpanningTreeRandomGraph[{8, 20}], GraphStyle "DiagramGold"

Out[598]=

1

2

3

4

5 6

7 8

Find the shortest set of paths connecting a set of points in the plane:
In[599]:=

pts = RandomReal[1, {10, 2}];

g = IGMeshGraph@DelaunayMesh[pts];

In[601]:=

tree = IGSpanningTreeg, VertexCoordinates pts
Out[601]=

The edge weights are preserved in the result.
In[602]:=

IGEdgeWeightedQ[tree]
Out[602]=

True

Compute the total path length.
In[603]:=

Total@IGEdgePropEdgeWeight[tree]
Out[603]=

2.0021

IGraph/M Documentation | 139

Find a maximum spanning tree by negating the weights before running the algorithm.
In[604]:=

IGSpanningTreeIGEdgeMapMinus, EdgeWeight, g, VertexCoordinates pts

Out[604]=

Find the minimum and maximum spanning trees of a network, using its edge betweenness as edge weights.
In[605]:=

g = ExampleData[{"NetworkGraph", "ZacharyKarateClub"}];

HighlightGraph

g,

EdgeList@IGSpanningTree@IGEdgeMap#, EdgeWeight IGEdgeBetweenness, g,

GraphHighlightStyle "Thick", ImageSize Small

 & /@

Identity, (* minimum spanning tree *)

Minus (* maximum spanning tree *)

Out[606]=

 ,

IGRandomSpanningTree
In[607]:=

? IGRandomSpanningTree

IGRandomSpanningTree [graph] gives a random
spanning tree of graph. All spanning trees are generated with equal probability.

IGRandomSpanningTree [{graph, vertex}] gives a random spanning tree of the graph component containing vertex.
IGRandomSpanningTree [spec, n] gives a list of n random spanning trees.

IGRandomSpanningTree samples the spanning trees (or forests) of a graph uniformly by performing a loop-erased

random walk. Edge directions are ignored.

If a spanning forest of the entire graph is requested using IGRandomSpanningTree[g], then the vertex names and

ordering are preserved. If a spanning tree of only a single component is requested using

IGRandomSpanningTree[{g, v}], then this is not the case.

140 | IGraph/M Documentation

Highlight a few random spanning trees of the Petersen graph.
In[608]:=

g = PetersenGraph[];

HighlightGraphg, #, GraphHighlightStyle "Thick" & /@ IGRandomSpanningTree[g, 9]
Out[609]=

 , , , ,

, , , ,

If the input is a multi-graph, each edge will be considered separately for the purpose of spanning tree calculations. Thus

the following graph has not 3, but 5 different spanning trees. Two pairs of these are indistinguishable based on their
adjacency matrix due to the indistinguishability of the two parallel 1 2 edges. However, since all 5 spanning trees are

generated with equal probability, two of the 3 adjacency matrices will appear twice as frequently as the third one.
In[610]:=

g = IGShorthand"1-2-3-1,1-2", MultiEdges True, ImageSize Small

Out[610]=

1

2

3

In[611]:=

IGRandomSpanningTree[g, 10000] // CountsByAdjacencyMatrix // KeySort // KeyMapMatrixForm
Out[611]=

0 0 1
0 0 1
1 1 0

 1976,
0 1 0
1 0 1
0 1 0

 3992,
0 1 1
1 0 0
1 0 0

 4032

IGraph/M Documentation | 141

Edge directions are ignored for the purpose of spanning tree calculation. Thus the result may not be an out-tree.
In[612]:=

IGRandomSpanningTree@WheelGraph11, DirectedEdges True

Out[612]=

Create mazes by taking random spanning trees of grid graphs.
In[613]:=

g = GridGraph[{10, 10}, GraphStyle "Web"];

HighlightGraphg, IGRandomSpanningTree[g], GraphHighlightStyle "DehighlightHide"

Out[614]=

142 | IGraph/M Documentation

In[615]:=

g = GridGraph{6, 6, 6}, VertexCoordinates Tuples[Range[6], {3}];

HighlightGraphg, IGRandomSpanningTree[g], GraphHighlightStyle "DehighlightHide"

Out[616]=

Generate a random spanning tree of the component containing vertex 8.
In[617]:=

IGRandomSpanningTree 1

2

3 4

5

6

7

8 9

10

11

1213

14

, 8, VertexLabels Automatic

Out[617]=

8 14 12 9 11 13 10 7

IGSpanningTreeCount
In[618]:=

? IGSpanningTreeCount

IGSpanningTreeCount [graph] gives the number of spanning trees of graph.
IGSpanningTreeCount [graph, vertex] gives the number of spanning trees rooted in vertex for a directed graph.

IGSpanningTreeCount computes the number of spanning trees of a graph using Kirchhoff’s theorem. Multigraphs

and directed graphs are supported.
In[619]:=

IGSpanningTreeCount

Out[619]=

3

IGraph/M Documentation | 143

The number of spanning trees of a directed graph, rooted in any vertex.
In[620]:=

IGSpanningTreeCount

1 2

3

Out[620]=

3

The number of spanning trees rooted in vertex 1.
In[621]:=

IGSpanningTreeCount

1 2

3

, 1

Out[621]=

1

In[622]:=

IGSpanningTreeCount[PetersenGraph[]]
Out[622]=

2000

IGSpanningTreeCount works on large graphs.

In[623]:=

g = HypercubeGraph[6]
Out[623]=

In[624]:=

IGSpanningTreeCount[g]
Out[624]=

1657509127047778993870601546036901052416000000

Edge multiplicities are taken into account. Thus the following graph has not 3, but 5 different spanning trees.
In[625]:=

IGSpanningTreeCount

1 2

3

Out[625]=

5

Dominance

In a directed graph, a vertex d is said to dominate a vertex v if every path from the root to v passes through d. We say that
d is an immediate dominator of v if it does not dominate any other dominator of v.

144 | IGraph/M Documentation

A dominator tree of a graph consists of the same vertices as the graph, and the children of a vertex are those other
vertices which it immediately dominates.

IGDominatorTree
In[626]:=

? IGDominatorTree

IGDominatorTree [graph, root] returns the dominator tree of a directed graph starting from root.

Find the dominator tree of a directed graph.
In[627]:=

g =

a

b

c

d

e

f

;

In[628]:=

IGDominatorTreeg, "a", GraphStyle "VintageDiagram"
Out[628]=

a

b

c

d e

f

IGraph/M Documentation | 145

Vertices that cannot be reached from the specified root are left isolated in the returned graph.
In[629]:=

IGDominatorTreeg, "b", GraphStyle "VintageDiagram"

Out[629]=

ab

c

d

e

f

IGDominatorTree accepts all standard Graph options.
In[630]:=

IGDominatorTree

1

23 4

5

6

7

8 9

10

, 8,

VertexShapeFunction "Name", PerformanceGoal "Quality"

Out[630]=

1

2

3

4

5

6

7

8

9

10

146 | IGraph/M Documentation

IGImmediateDominators
In[631]:=

? IGImmediateDominators

IGImmediateDominators[graph, root] returns the immediate dominator of each vertex relative to root.

Directly find the immediate dominators of vertices in a graph.
In[632]:=

g =

a

b

c

d

e

f

;

IGImmediateDominators[g, "a"]
Out[633]=

b a, c b, d a, e a, f e

The immediate dominator of a vertex is its parent in the dominator tree.
In[634]:=

tree = IGDominatorTreeg, "a", VertexLabels Automatic

Out[634]=

a

b

c

d e

f

In[635]:=

IGAdjacencyList[tree, "In"]
Out[635]=

a {}, b {a}, c {b}, d {a}, e {a}, f {e}

Neither the root, nor vertices unreachable from the root are included in the keys of the returned association.
In[636]:=

IGImmediateDominators[g, "b"]
Out[636]=

c b, d c

IGraph/M Documentation | 147

k-cores
In[637]:=

? IGCoreness

IGCoreness[graph] returns the coreness of each vertex. Coreness is the highest order of a k-core containing the vertex.
IGCoreness[graph, "In"] considers only in-degrees in a directed graph.
IGCoreness[graph, "Out"] considers only out-degrees in a directed graph.

A k-core of a graph is a maximal subgraph in which each vertex has degree at least k. The coreness of a vertex is the

highest order of k-cores that contain it.
In[638]:=

g =

1

2

346

7

8

5 ;

In[639]:=

IGCoreness[g]
Out[639]=

{3, 3, 3, 3, 2, 2, 2, 2}

In[640]:=

{KCoreComponents[g, 2], KCoreComponents[g, 3]}
Out[640]=

{{{1, 2, 3, 4, 6, 7, 8, 5}}, {{1, 2, 3, 4}}}

By default, edge directions are ignored, and multi-edges are considered.
In[641]:=

g = 1

2

3

4 ;

In[642]:=

IGCoreness[g]
Out[642]=

{4, 4, 4, 3}

Use the second argument to consider only in- or out-degrees.
In[643]:=

IGCoreness[g, "In"]
Out[643]=

{2, 2, 2, 1}

In[644]:=

IGCoreness[g, "Out"]
Out[644]=

{2, 2, 2, 2}

Matchings

A matching of a graph is a subset of its edges that share no vertices between them.

148 | IGraph/M Documentation

IGMaximumMatching
In[645]:=

? IGMaximumMatching

IGMaximumMatching[graph] gives a maximummatching of graph. Edge weights are ignored.

A matching of a graph is also known as an independent edge set.

IGMaximumMatching ignores edge directions and edge weights.

In[646]:=

g = RandomGraph[{10, 20}];

In[647]:=

IGMaximumMatching[g]
Out[647]=

{7 10, 6 8, 3 9, 2 5, 1 4}

In[648]:=

HighlightGraphg, IGMaximumMatching[g], GraphHighlightStyle "Thick"
Out[648]=

IGMatchingNumber
In[649]:=

? IGMatchingNumber

IGMatchingNumber[graph] gives the matching number of graph.

The matching number of a graph is the size of its maximum matchings.

Graph traversal

IGUnfoldTree
In[650]:=

? IGUnfoldTree

IGUnfoldTree[graph, {root1, root2,…}] performs a breadth-first search on graph starting
from the given roots, and converts it to a tree or forest by replicating vertices that were found more
than once. The original vertex that generated a tree node is stored in the "OriginalVertex" property.

IGUnfoldTree creates a tree based on the breadth-first traversal of a graph. Each time a graph vertex is found, a new

tree vertex is created.

Available options:

◼DirectedEdges False will ignore edge directions in directed graphs. Otherwise, the search is done only along

edge directions.

IGraph/M Documentation | 149

In[651]:=

tree = IGUnfoldTree

1

2

346

7

8

5 , {1}

Out[651]=

The original vertex that generates a tree node is stored in the "OriginalVertex" property.

In[652]:=

IGVertexProp"OriginalVertex"[tree]

Out[652]=

{1, 2, 3, 4, 6, 7, 8, 5, 3, 4, 4, 8}

We can label the tree nodes with the name of the original vertex either using pattern matching in VertexLabels along

with PropertyValue …

In[653]:=

IGLayoutReingoldTilford

tree,

"RootVertices" {1}, VertexLabels v_ PropertyValue{tree, v}, "OriginalVertex"

Out[653]=

1

2 3 4

6

7 8

53 4 4

8

150 | IGraph/M Documentation

… or using IGVertexMap.
In[654]:=

IGLayoutReingoldTilfordtree, "RootVertices" {1} //

IGVertexMap# &, VertexLabels IGVertexProp"OriginalVertex"

Out[654]=

1

2 3 4

6

7 8

53 4 4

8

In directed graphs, the search is done along edge directions. It may be necessary to give multiple starting roots to fully

unfold a weakly connected (or unconnected) graph.
In[655]:=

IGUnfoldTree[Graph[{1 2, 2 3}], {2, 1}] //

IGVertexMap# &, VertexLabels IGVertexProp"OriginalVertex"
Out[655]=

1 2

32

IGraph/M Documentation | 151

Use DirectedEdges False to ignore edge directions during the search. Edge directions are still preserved in the

result.
In[656]:=

IGUnfoldTreeGraph[{1 2, 2 3}], {2}, DirectedEdges False //

IGVertexMap# &, VertexLabels IGVertexProp"OriginalVertex"
Out[656]=

1 2 3

Other structural properties

IGNullGraphQ
In[657]:=

? IGNullGraphQ

IGNullGraphQ[graph] tests whether graph has no vertices.

IGNullGraphQ returns True only for the null graph, i.e. the graph that has no vertices.
In[658]:=

IGNullGraphQ[IGEmptyGraph[]]
Out[658]=

True

For graphs that have vertices, but no edges, it returns False.
In[659]:=

IGNullGraphQ[IGEmptyGraph[5]]
Out[659]=

False

In contrast, the built-in EmptyGraphQ tests if there are no edges:
In[660]:=

EmptyGraphQ[IGEmptyGraph[5]]
Out[660]=

True

IGCompleteQ
In[661]:=

? IGCompleteQ

IGCompleteQ[graph] tests if all pairs of vertices are connected in graph.

IGCompleteQ tests if a graph is complete, i.e. if all pairs of vertices are connected.
In[662]:=

IGCompleteQ@IGCompleteGraph[10]
Out[662]=

True

In[663]:=

IGCompleteQ@IGCompleteGraph5, DirectedEdges True

Out[663]=

True

152 | IGraph/M Documentation

IGCompleteQ ignores self-loops and multi-edges.
In[664]:=

IGCompleteQ

Out[664]=

True

Check if each connected component of a graph is a clique.
In[665]:=

g = GraphData[{8, 911}]
Out[665]=

In[666]:=

AllTrue[ConnectedGraphComponents[g], IGCompleteQ]
Out[666]=

True

The null graph is considered complete.
In[667]:=

IGCompleteQ@IGEmptyGraph[]
Out[667]=

True

IGCactusQ
In[668]:=

? IGCactusQ

IGCactusQ[graph] tests if graph is a cactus

IGCactusQ tests if a graph is a cactus. A cactus graph is a connected undirected graph in which any two simple cycles

share at most one vertex. Equivalently, a cactus is a connected graph in which every edge belongs to at most one simple

IGraph/M Documentation | 153

cycle.
In[669]:=

IGCactusQ

Out[669]=

True

In[670]:=

IGCactusQGridGraph[{2, 3}]

Out[670]=

False

IGCactusQ supports multigraphs and ignores self-loops.
In[671]:=

IGCactusQ /@ ,

Out[671]=

{True, False}

The null graph is not considered to be a cactus, but the singleton graph is.
In[672]:=

IGCactusQ /@ {IGEmptyGraph[0], IGEmptyGraph[1]}
Out[672]=

{False, True}

Currently, IGCactusQ does not support directed graphs.
In[673]:=

IGCactusQ[Graph[{1 2}]]

IGCactusQ: IGCactusQ is not implemented for directed graphs.

Out[673]=

$Failed

Motifs and subgraphs

Motifs

IGraph/M’s motif-related functions count the number of times each possible connectivity pattern of k vertices (i.e.
induced subgraph of size k) occurs in a graph. The patterns are called motifs. As of IGraph/M 0.6, size 3 and 4 motifs are

supported in directed graphs and size 3 to 6 in undirected graphs. Only (weakly) connected subgraphs are considered.

To count larger induced subgraphs, see IGLADSubisomorphismCount. To identify where a subgraph occurs, see

IGLADFindSubisomorphisms.

To count non-connected size-3 subgraphs, use IGTriadCensus.

igraph’s motif functions use the RAND-ESU algorithm, which is able to uniformly sample a random subset of motifs

(connected subgraphs), and can thus estimate motif counts even in very large graphs. See the description of IGMotifs

for an example.

154 | IGraph/M Documentation

References

◼ S. Wernicke, Efficient Detection of Network Motifs, IEEE/ACM Trans. Comput. Biol. Bioinforma. 3, 347 (2006).

IGMotifs
In[674]:=

? IGMotifs

IGMotifs[graph, motifSize] gives the motif distribution of graph. See IGIsoclass and IGData for motif ordering.
IGMotifs[graph, motifSize, cutProbabilities] terminates the search with the given probability at each level of the ESU tree.

IGMotifs counts how many times each motif (i.e. induced subgraph) of the given size occurs in the graph. For sub-
graphs that are not weakly connected, Indeterminate is returned.

Available options are:

◼DirectedEdges False treats the graph as undirected and DirectedEdges True treats the graph as

directed. The default is DirectedEdges Automatic, which respects the directedness of the graph.

Motifs are returned by their IGIsoclass, i.e. the same order as listed in IGData.
In[675]:=

mot3 = Graph#, ImageSize 36, VertexSize 0.1 & /@ IGData"AllDirectedGraphs", 3

Out[675]=

 , , , , , , ,

, , , , , , , ,

Let us count size-3 motifs in the following graph, and summarize them a table. For non-weakly-connected subgraphs,
Indeterminate is returned.

In[676]:=

g = RandomGraph{10, 40}, DirectedEdges True

Out[676]=

IGraph/M Documentation | 155

In[677]:=

Gridmot3, IGMotifs[g, 3], Frame All

Out[677]=

Indeterminate

Indeterminate

7

Indeterminate

14

11

3

11

3

16

3

5

7

3

9

0

Empty graphs are treated as undirected by default. To treat them as directed, use DirectedEdges True. The result

will be different as the number of non-isomorphic graphs on k vertices is not the same in the directed and undirected

cases.
In[678]:=

IGMotifsIGEmptyGraph[5], 3, DirectedEdges # & /@ Automatic, True, False

Out[678]=

{{Indeterminate, Indeterminate, 0, 0},

{Indeterminate, Indeterminate, 0, Indeterminate, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{Indeterminate, Indeterminate, 0, 0}}

Example: metabolic network

Let us find the size-4 motifs that stand out in the E. coli metabolic network by comparing the motif counts to that of a

rewired graph:
In[679]:=

g = ExampleData"NetworkGraph", "MetabolicNetworkEscherichiaColi";

156 | IGraph/M Documentation

In[680]:=

rg = IGRewire[g, 50000];

In[681]:=

ratios = N@Quiet
IGMotifs[g, 4]

IGMotifs[rg, 4]

Out[681]=

{Indeterminate, Indeterminate, Indeterminate, 1.30949, Indeterminate, Indeterminate,

Indeterminate, 1.31896, 0.353667, Indeterminate, Indeterminate, Indeterminate, 0.578637,

0.58617, 0., Indeterminate, 0.016559, 0., 0., 4.94656, 0., 0., Indeterminate, Indeterminate,

1.29702, 0.346928, 0.165433, Indeterminate, Indeterminate, 0.674934, 0., 0.0190229,

0., Indeterminate, Indeterminate, 0., 0., 0., 0., Indeterminate, 0.28928, 0.708281, 0.,

0.300212, 0., 0.188359, 0.0603697, 0., 0., 0., 0., 0., 1.37343, 0., 0.0753138, 0., 0., 0.,

0., 0., 0., 0., Indeterminate, 0., 0., 0., 31.1911, 0., 0.21875, 0., 0., 0., 0., 0.186047,

0., 0., 1.25741, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., Indeterminate,

0.341903, 0.129316, 1.38161, 0., 0.0207404, 0., 0.245275, 0., 0.046376, 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0.589124, 0., 0.275862, 0., 0., 0., 0., 0., 0., 0., Indeterminate, 0.429719,

0., 0., 0., 2.11212, 0., 0., 44.6957, 0., 0.557143, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 2.22222, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.0769231, 0.,

0., 0.,

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., Indeterminate,

0., 0., 0., 0., Indeterminate, 0., 0., 0., 0., 0., 0., Indeterminate, 0., Indeterminate}

In[682]:=

largeRatios = Selectratios, # > 5 &
Out[682]=

{31.1911, 44.6957}

There are two motifs that are more than 30 times more common in the metabolic network than in the rewired graph.
In[683]:=

ExtractIGData"AllDirectedGraphs", 4, FirstPositionratios, # & /@ largeRatios

Out[683]=

 ,

The Davidson–Harel algorithm attempts to reduce edge crossings and can draw these subgraphs in a clearer way:
In[684]:=

IGLayoutDavidsonHarel /@ %

Out[684]=

 ,

Estimating motif counts in large graphs

IGMotifs uses the RAND-ESU algorithm which can uniformly sample a random subset of motifs, and thus estimate

motif counts even in very large graphs. To enable random sampling, set a cutoff probability

IGraph/M Documentation | 157

cutoff = {p1, p2, …, pn} for stopping the search at each level of the ESU tree. The length of the cutoff probability

vector, n, must be the same as the motif size. The number of sampled motifs is, on average, a fraction

(1 - p1) × (1 - p2) ×…× (1 - pn) of the total number.
In[685]:=

bigG = ExampleData"NetworkGraph", "WorldWideWeb";

VertexCountbigG, EdgeCountbigG

Out[686]=

{325729, 1497134}

Sample a fraction 0.13 = 0.001 of all motifs.
In[687]:=

IGMotifsbigG, 3, 1 - 0.1 {1, 1, 1} // AbsoluteTiming
Out[687]=

{0.676143, {Indeterminate, Indeterminate, 34953,

Indeterminate, 1549, 1646, 27314, 378, 291, 681, 3917, 2, 49, 171, 71, 7010}}

Sample 12.5% of motifs, i.e. a fraction of 0.53.
In[688]:=

IGMotifsbigG, 3, 1 - 0.5 {1, 1, 1} // AbsoluteTiming
Out[688]=

{11.8555, {Indeterminate, Indeterminate, 36350526, Indeterminate, 299314,

530929, 5424564, 67262, 34048, 166963, 516326, 1730, 4461, 204276, 12329, 800823}}

IGMotifsVertexParticipation
In[689]:=

? IGMotifsVertexParticipation

IGMotifsVertexParticipation [graph, motifSize] counts the number of times each vertex occurs in each motif.

IGMotifsVertexParticipation counts how many times each vertex participates in each motif. For each vertex,
the result is returned in the same format as with IGMotifs.

Available options are:

◼DirectedEdges False treats the graph as undirected and DirectedEdges True treats the graph as

directed. The default is DirectedEdges Automatic, which respects the directedness of the graph.

Count how many times each vertex appears in each 3-motif in a directed graph.
In[690]:=

g =

A

B
C

D

E

F

;

In[691]:=

mot = IGMotifsVertexParticipation[g, 3]
Out[691]=

A {Indeterminate, Indeterminate, 0, Indeterminate, 2, 0, 0, 2, 1, 1, 0, 2, 0, 0, 0, 0},

B {Indeterminate, Indeterminate, 0, Indeterminate, 1, 1, 0, 3, 0, 2, 0, 1, 1, 1, 0, 0},

C {Indeterminate, Indeterminate, 1, Indeterminate, 1, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0},

D {Indeterminate, Indeterminate, 0, Indeterminate, 2, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0},

E {Indeterminate, Indeterminate, 1, Indeterminate, 0, 0, 0, 2, 1, 2, 0, 1, 1, 0, 0, 0},

F {Indeterminate, Indeterminate, 1, Indeterminate, 3, 0, 0, 2, 0, 1, 0, 1, 0, 1, 0, 0}

158 | IGraph/M Documentation

The sum of the participation counts in 3-motifs is 3 times the total motif counts of the graph.
In[692]:=

Total[mot] === 3 IGMotifs[g, 3]
Out[692]=

True

IGMotifsTotalCount and IGMotifsTotalCountEstimate
In[693]:=

? IGMotifsTotalCount

IGMotifsTotalCount [graph, motifSize] gives the total
count of motifs (weakly connected subgraphs) of the given size in the graph.

IGMotifsTotalCount [graph, motifSize, cutProbabilities]
terminates the search with the given probability at each level of the ESU tree.

In[694]:=

? IGMotifsTotalCountEstimate

IGMotifsTotalCountEstimate [graph, motifSize, sampleSize] estimates the total count of motifs
(weakly connected subgraphs) of the given size in graph, based on a vertex sample of the given size.

IGMotifsTotalCountEstimate [graph, motifSize, vertices] uses the specified vertices as the sample.
IGMotifsTotalCountEstimate [graph, motifSize, sample,

cutProbabilities] terminates the search with the given probability at each level of the ESU tree.

IGMotifsTotalCountgraph, motifSize counts the number of weakly connected subgraphs of the given size

in a graph. All subgraph sizes greater than 2 are supported.

IGMotifsTotalCountEstimategraph, motifSize, sampleSize estimates the total number of motifs by

taking a random subset of vertices of the specified size, and counting motifs in which these vertices participate. The total
number is estimated as motifCount × vertexCount / sampleSize.
IGMotifsTotalCountEstimategraph, motifSize, vertices uses the specified vertices as the sample.

Let us create a graph.
In[695]:=

g = RandomGraph[{20, 50}];

The number of size-4 subgraphs it has is:
In[696]:=

Binomial[VertexCount[g], 4]
Out[696]=

4845

However, only a small fraction of these is connected:
In[697]:=

IGMotifsTotalCount[g, 4]
Out[697]=

779

IGMotifsTotalCount is effectively equivalent to (but much faster than) the following:
In[698]:=

CountSubsetsVertexList[g], {4}, subset_ /; WeaklyConnectedGraphQ@Subgraph[g, subset]
Out[698]=

779

IGraph/M Documentation | 159

Estimate the count of connected subgraphs by subsampling: at each level of the ESU tree, continue only with probability

0.9.
In[699]:=

IGMotifsTotalCount[g, 4, 1 - 0.9 {1, 1, 1, 1}] 0.9^4

Out[699]=

833.714

Estimate the count of connected subgraphs by considering a random subset of 15 vertices (out of a total of 20).
In[700]:=

IGMotifsTotalCountEstimate[g, 4, 15]
Out[700]=

994

Use the first 15 vertices tot estimate the count.
In[701]:=

IGMotifsTotalCountEstimate[g, 4, Range[15]]
Out[701]=

1038

Triad and dyad census
In[702]:=

? IGTriadCensus

IGTriadCensus[graph] classifies triads in the graph
into 16 possible states, labelled using MAN (mutual, asymmetric, null) notation.

In[703]:=

? IGDyadCensus

IGDyadCensus[graph] classifies dyad in the graph into mutual, asymmetric or null states.

See IGData["MANTriadLabels"] for the mapping between MAN labels and graphs.

IGTriadCensus[g] does not return triad counts in the same order as IGMotifs[g, 3], i.e. ordered according to

the triads’ IGIsoclass[]. To get the result ordered by isoclass, use

LookupIGTriadCensus[g], Keys@IGData"MANTriadLabels"

IGData["MANTriadLabels"] are ordered according to isoclass.
In[704]:=

net = ExampleData"NetworkGraph", "MetabolicNetworkActinobacillusActinomycetemcomitans";

In[705]:=

IGDyadCensus[net]
Out[705]=

Mutual 32, Asymmetric 2304, Null 490192

In[706]:=

IGTriadCensus[net]
Out[706]=

003 160429739, 012 2191799, 102 30579, 021D 11774, 021U 10566, 021C 22853, 111D 496,

111U 583, 030T 0, 030C 0, 201 27, 120D 0, 120U 0, 120C 0, 210 0, 300 0

160 | IGraph/M Documentation

Finding triangles

IGTriangles
In[707]:=

? IGTriangles

IGTriangles[graph] lists all triangles in the graph. Edge directions are ignored.

Highlight all triangles in a graph.
In[708]:=

g = RandomGraph{8, 16}, VertexSize Large;

In[709]:=

HighlightGraphg, Subgraph[g, #], ImageSize Tiny, GraphHighlightStyle "Thick" & /@

IGTriangles[g]
Out[709]=

 , , , ,

, , ,

IGAdjacenctTriangleCount
In[710]:=

? IGAdjacentTriangleCount

IGAdjacentTriangleCount [graph] counts the triangles each vertex participates in. Edge directions are ignored.
IGAdjacentTriangleCount [graph, vertex] counts the triangles vertex participates in.
IGAdjacentTriangleCount [graph, {vertex1, vertex2,…}] counts the triangles the specified vertices participate in.

Label a graph’s vertices based on the number of adjacent triangles.
In[711]:=

RandomGraph{8, 16}, VertexSize Large //

IGVertexMapPlaced[#, Center] &, VertexLabels IGAdjacentTriangleCount
Out[711]=

4

1

5

7

1

5

2

5

IGTriangleFreeQ

Triangle-free graphs do not have any fully connected subgraphs of size 3. Equivalently, they do not have any cliques

IGraph/M Documentation | 161

(other than 2-cliques, which are edges).
In[712]:=

? IGTriangleFreeQ

IGTriangleFreeQ [graph] tests if graph is triangle-free.

Mycielski graphs are triangle-free.
In[713]:=

IGTriangleFreeQ@GraphData"Mycielski", 10

Out[713]=

True

Isomorphism and the automorphism group
igraph implements three isomorphism testing algorithms: BLISS, VF2 and LAD. These support slightly different
functionality.

Naming: Most of IGraph/M's isomorphism related functions include the name of the algorithm as a prefix, e.g.
IGBlissIsomorphicQ. Functions named as …GetIsomorphism will find a single isomorphism. Functions named as

…FindIsomorphisms can find multiple isomorphisms. Both return a result in a format compatible with the built-in

FindGraphIsomorphism.

Additionally, IGIsomorphicQ[] and IGSubisomorphicQ[] try to select the best algorithm for the given graphs. For
graphs without multi-edges, they use igraph’s default algorithm selection. For multigraphs, they use VF2 after internally

transforming the multigraphs to edge- and vertex-coloured simple graphs, in a manner similar to

IGColoredSimpleGraph.

Basic functions

IGIsomorphicQ
In[714]:=

? IGIsomorphicQ

IGIsomorphicQ[graph1, graph2] tests if graph1 and graph2 are isomorphic.

In[715]:=

? IGGetIsomorphism

IGGetIsomorphism[graph1, graph2] gives one isomorphism between graph1 and graph2, if it exists.

IGIsomorphicQ decides if two graphs are isomorphic.
In[716]:=

IGIsomorphicQ[IGShorthand["a-b-c-a-d"], IGShorthand["1-2,3-4-2-3"]]
Out[716]=

True

162 | IGraph/M Documentation

IGIsomorphicQ supports multigraphs.
In[717]:=

IGIsomorphicQ ,

Out[717]=

True

In[718]:=

IGIsomorphicQ ,

Out[718]=

False

Get a specific mapping between the vertices of the graphs.
In[719]:=

IGGetIsomorphism
1

2

3

4
, 1

2

3

4

Out[719]=

{1 4, 2 3, 3 1, 4 2}

When the graphs are not isomorphic, an empty list is returned.
In[720]:=

IGGetIsomorphism[CycleGraph[4], IGCompleteGraph[4]]
Out[720]=

{}

IGSubisomorphicQ
In[721]:=

? IGSubisomorphicQ

IGSubisomorphicQ[subgraph, graph] tests if subgraph is contained within graph.

In[722]:=

? IGGetSubisomorphism

IGGetSubisomorphism[subgraph, graph] gives one subisomorphism from subgraph to graph, if it exists.

IGSubisomorphicQ decides if a subgraph is part of a larger graph.

A dodecahedral graph does not contain a [1, 2, 3] symmetric tree.
In[723]:=

target = GraphData["DodecahedralGraph"];

pattern = IGSymmetricTree[{1, 2, 3}];

IGraph/M Documentation | 163

In[725]:=

IGSubisomorphicQ[pattern, target]
Out[725]=

False

It does contain a [3, 2, 1] tree.
In[726]:=

pattern = IGSymmetricTree[{3, 2, 1}];

IGSubisomorphicQ[pattern, target]
Out[727]=

True

Let us retrieve a specific mapping ...
In[728]:=

iso = IGGetSubisomorphism[pattern, target]
Out[728]=

{1 1, 2 14, 3 15, 4 16, 5 3, 6 9, 7 4,

8 10, 9 7, 10 8, 11 19, 12 17, 13 20, 14 18, 15 11, 16 12}

... and highlight it.
In[729]:=

HighlightGraphtarget, VertexReplacepattern, Normaliso,

GraphHighlightStyle "Thick"

Out[729]=

IGSubisomorphicQ supports multigraphs.
In[730]:=

IGSubisomorphicQ ab , 1 2 3

Out[730]=

True

In[731]:=

IGGetSubisomorphism ab , 1 2 3

Out[731]=

{a 1, b 2}

164 | IGraph/M Documentation

In[732]:=

IGSubisomorphicQ ab , 1 2 3

Out[732]=

True

In[733]:=

IGSubisomorphicQ ab , 1 2 3

Out[733]=

False

Bliss

The Bliss library was developed by Tommi Junttila and Petteri Kaski. It is capable of canonical labelling of directed or
undirected vertex coloured graphs.

Bliss generally outperforms Mathematica’s built-in isomorphisms functions (including finding and counting automor-
phisms) as ofMathematica 12.1. However, this advantage will only be apparent for large and difficult graphs. For small
ones the overhead of having to copy the graph and convert it to igraph’s internal format is much larger than the actual
computation time.

In[734]:=

? IGBliss*

IGraphM`

IGBlissAutomorphismCount IGBlissCanonicalLabeling IGBlissIsomorphicQ

IGBlissAutomorphismGroup IGBlissCanonicalPermutation

IGBlissCanonicalGraph IGBlissGetIsomorphism

All Bliss functions take a "SplittingHeuristics" option, which can influence the performance of the method.

Possible values are:

◼"First" – First non-unit cell. Very fast but may result in large search spaces on difficult graphs. Use for large but easy

graphs.

◼"FirstSmallest" – First smallest non-unit cell. Fast, should usually produce smaller search spaces than "First".

◼"FirstLargest" – First largest non-unit cell. Fast, should usually produce smaller search spaces than "First".

◼"FirstMaximallyConnected" – First maximally non-trivially connected non-unit cell. Not so fast, should usually

produce smaller search spaces than "First", "FirstSmallest" and "FirstLargest".

◼"FirstSmallestMaximallyConnected" – First smallest maximally non-trivially connected non-unit cell. Not so

fast, should usually produce smaller search spaces than "First", "FirstSmallest" and "FirstLargest".

◼"FirstLargestMaximallyConnected" – First largest maximally non-trivially connected non-unit cell. Not so

fast, should usually produce smaller search spaces than "First", "FirstSmallest" and "FirstLargest".

The default setting is "FirstLargest", which performs well on average on sparse graphs.

Note: The result of the IGBlissCanonicalLabeling, IGBlissCanonicalPermutation and

IGBlissanonicalGraph functions depend on the choice of "SplittingHeuristics". See the Bliss documenta-

tion for more information.

IGraph/M Documentation | 165

http://www.tcs.hut.fi/Software/bliss/
http://www.tcs.hut.fi/Software/bliss/doxy/classbliss_1_1Graph.html#a08da370e34106cd7db479eca7c7375cc
http://www.tcs.hut.fi/Software/bliss/doxy/classbliss_1_1Graph.html#a08da370e34106cd7db479eca7c7375cc

Basic examples

Let us take the cuboctahedral graph from GraphData …

In[735]:=

g1 = GraphData["CuboctahedralGraph"]
Out[735]=

… and also generate it based on its LCF notation.
In[736]:=

g2 = IGLCF[{4, 2}, 6]
Out[736]=

The two graphs are isomorphic:
In[737]:=

IGBlissIsomorphicQ[g1, g2]
Out[737]=

True

One particular mapping between them is the following:
In[738]:=

IGBlissGetIsomorphism[g1, g2]
Out[738]=

{1 1, 2 2, 3 5, 4 12, 5 9, 6 4, 7 10, 8 3, 9 6, 10 11, 11 8, 12 7}

How many mappings are there in total? The same number as the number of automorphisms of either graph.
In[739]:=

IGBlissAutomorphismCount[g1]
Out[739]=

48

166 | IGraph/M Documentation

Bliss cannot generate all 48 of these mappings directly. We can either use VF2 for this …

In[740]:=

IGVF2FindIsomorphisms[g1, g2] // Length
Out[740]=

48

… or we can use the automorphism group computed by the IGBlissAutomorphismGroup function.
In[741]:=

group = IGBlissAutomorphismGroup[g1]
Out[741]=

PermutationGroup[

{Cycles[{{2, 3}, {4, 5}, {8, 9}, {10, 11}}], Cycles[{{2, 4}, {3, 5}, {6, 7}, {8, 10}, {9, 11}}],

Cycles[{{1, 2}, {3, 6}, {5, 8}, {7, 10}, {11, 12}}]}]

In[742]:=

GroupOrder[group]
Out[742]=

48

Ask for all 48 vertex permutations that create isomorphic graphs:
In[743]:=

PermutationReplaceVertexList[g1], group
Out[743]=

{{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, {1, 3, 2, 5, 4, 6, 7, 9, 8, 11, 10, 12},

{1, 4, 5, 2, 3, 7, 6, 10, 11, 8, 9, 12}, {1, 5, 4, 3, 2, 7, 6, 11, 10, 9, 8, 12},

{2, 1, 6, 4, 8, 3, 10, 5, 9, 7, 12, 11}, {2, 4, 8, 1, 6, 10, 3, 7, 12, 5, 9, 11},

{2, 6, 1, 8, 4, 3, 10, 9, 5, 12, 7, 11}, {2, 8, 4, 6, 1, 10, 3, 12, 7, 9, 5, 11},

{3, 1, 6, 5, 9, 2, 11, 4, 8, 7, 12, 10}, {3, 5, 9, 1, 6, 11, 2, 7, 12, 4, 8, 10},

{3, 6, 1, 9, 5, 2, 11, 8, 4, 12, 7, 10}, {3, 9, 5, 6, 1, 11, 2, 12, 7, 8, 4, 10},

{4, 1, 7, 2, 10, 5, 8, 3, 11, 6, 12, 9}, {4, 2, 10, 1, 7, 8, 5, 6, 12, 3, 11, 9},

{4, 7, 1, 10, 2, 5, 8, 11, 3, 12, 6, 9}, {4, 10, 2, 7, 1, 8, 5, 12, 6, 11, 3, 9},

{5, 1, 7, 3, 11, 4, 9, 2, 10, 6, 12, 8}, {5, 3, 11, 1, 7, 9, 4, 6, 12, 2, 10, 8},

{5, 7, 1, 11, 3, 4, 9, 10, 2, 12, 6, 8}, {5, 11, 3, 7, 1, 9, 4, 12, 6, 10, 2, 8},

{6, 2, 3, 8, 9, 1, 12, 4, 5, 10, 11, 7}, {6, 3, 2, 9, 8, 1, 12, 5, 4, 11, 10, 7},

{6, 8, 9, 2, 3, 12, 1, 10, 11, 4, 5, 7}, {6, 9, 8, 3, 2, 12, 1, 11, 10, 5, 4, 7},

{7, 4, 5, 10, 11, 1, 12, 2, 3, 8, 9, 6}, {7, 5, 4, 11, 10, 1, 12, 3, 2, 9, 8, 6},

{7, 10, 11, 4, 5, 12, 1, 8, 9, 2, 3, 6}, {7, 11, 10, 5, 4, 12, 1, 9, 8, 3, 2, 6},

{8, 2, 10, 6, 12, 4, 9, 1, 7, 3, 11, 5}, {8, 6, 12, 2, 10, 9, 4, 3, 11, 1, 7, 5},

{8, 10, 2, 12, 6, 4, 9, 7, 1, 11, 3, 5}, {8, 12, 6, 10, 2, 9, 4, 11, 3, 7, 1, 5},

{9, 3, 11, 6, 12, 5, 8, 1, 7, 2, 10, 4}, {9, 6, 12, 3, 11, 8, 5, 2, 10, 1, 7, 4},

{9, 11, 3, 12, 6, 5, 8, 7, 1, 10, 2, 4}, {9, 12, 6, 11, 3, 8, 5, 10, 2, 7, 1, 4},

{10, 4, 8, 7, 12, 2, 11, 1, 6, 5, 9, 3}, {10, 7, 12, 4, 8, 11, 2, 5, 9, 1, 6, 3},

{10, 8, 4, 12, 7, 2, 11, 6, 1, 9, 5, 3}, {10, 12, 7, 8, 4, 11, 2, 9, 5, 6, 1, 3},

{11, 5, 9, 7, 12, 3, 10, 1, 6, 4, 8, 2}, {11, 7, 12, 5, 9, 10, 3, 4, 8, 1, 6, 2},

{11, 9, 5, 12, 7, 3, 10, 6, 1, 8, 4, 2}, {11, 12, 7, 9, 5, 10, 3, 8, 4, 6, 1, 2},

{12, 8, 9, 10, 11, 6, 7, 2, 3, 4, 5, 1}, {12, 9, 8, 11, 10, 6, 7, 3, 2, 5, 4, 1},

{12, 10, 11, 8, 9, 7, 6, 4, 5, 2, 3, 1}, {12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}}

Permuting the adjacency matrix with any of these leaves it invariant.
In[744]:=

perms = PermutationList[#, VertexCount[g1]] & /@ GroupElements[group];

Equal @@ AdjacencyMatrix[g1]〚#, #〛 & /@ perms
Out[745]=

True

IGraph/M Documentation | 167

Bliss works by computing a canonical labelling of vertices. Then isomorphism can be tested for by comparing the canoni-
cally relabelled graphs.

In[746]:=

IGBlissCanonicalGraph[g1] === IGBlissCanonicalGraph[g2]
Out[746]=

True

IGBlissCanonicalGraph returns graphs in a consistent format so that two graphs are isomorphic if and only if their
canonical graphs will compare equal with ===. Note that in Mathematica, graphs may not always compare equal even if
they have the same vertex and edge lists.

The corresponding permutation and labelling are
In[747]:=

IGBlissCanonicalPermutation[g1]
Out[747]=

{12, 11, 9, 10, 8, 7, 6, 5, 3, 4, 2, 1}

In[748]:=

IGBlissCanonicalLabeling[g1]
Out[748]=

1 12, 2 11, 3 9, 4 10, 5 8, 6 7, 7 6, 8 5, 9 3, 10 4, 11 2, 12 1

Notice that the canonical labelling is simply
In[749]:=

AssociationThreadVertexList[g1], IGBlissCanonicalPermutation[g1]

Out[749]=

1 12, 2 11, 3 9, 4 10, 5 8, 6 7, 7 6, 8 5, 9 3, 10 4, 11 2, 12 1

Also notice that it is a mapping from g1 to IGBlissCanonicalGraph[g1]:

In[750]:=

MemberQ

IGVF2FindIsomorphismsg1, IGBlissCanonicalGraph[g1],

IGBlissCanonicalLabeling[g1]

Out[750]=

True

The canonical graph returned by IGBlissCanonicalGraph always has vertices labelled by the integers 1, 2, … It
can also be used to filter duplicates from a list of graphs

For example, let us generate all possible adjacency matrices of 3-vertex simple directed graphs.
In[751]:=

(* fills nondiagonal entries of n by n matrix from vector *)

toMat[vec_, n_] := SparseArray@PartitionFlatten@RifflePartition[vec, n], 0, {1, -1, 2}, n

There are 23×2 = 26 = 64 such matrices.
In[752]:=

graphs = AdjacencyGraphtoMat[#, 3], DirectedEdges True & /@ IntegerDigits[Range[2^6] - 1, 2, 6];

But only 16 of them correspond to non-isomorphic graphs
In[753]:=

DeleteDuplicatesBygraphs, IGBlissCanonicalGraph // Length

Out[753]=

16

When IGBlissCanonicalGraph is given a vertex coloured graph, it will encode the colours into a vertex property

named "Color". This allows distinguishing between graphs whose canonical graphs are identical in structure, but differ

168 | IGraph/M Documentation

in colouring.

Take for example the following coloured graphs:
In[754]:=

g = Graph{1 2, 2 3}, VertexSize Large, GraphStyle "BasicBlack";

colg1 = Graphg, Properties {1 {"color" 1}, 2 {"color" 3}, 3 {"color" 2}};

colg2 = Graphg, Properties {1 {"color" 1}, 2 {"color" 3}, 3 {"color" 1}};

Visualize them for clarity:
In[757]:=

IGVertexMap[ColorData[97], VertexStyle IGVertexProp["color"]] /@ {colg1, colg2}
Out[757]=

 ,

The vertex and edge lists of their canonical graphs are identical:
In[758]:=

cang1 = IGBlissCanonicalGraph[{colg1, "VertexColors" "color"}];

cang2 = IGBlissCanonicalGraph[{colg2, "VertexColors" "color"}];

In[760]:=

VertexList /@ {cang1, cang2}

EdgeList /@ {cang1, cang2}
Out[760]=

{{1, 2, 3}, {1, 2, 3}}

Out[761]=

{{1 3, 2 3}, {1 3, 2 3}}

But they differ in colouring, and therefore do not compare equal:
In[762]:=

IGVertexPropertyList[cang1]
Out[762]=

{Color, VertexCoordinates, VertexShape, VertexShapeFunction, VertexSize, VertexStyle}

In[763]:=

IGVertexProp["Color"] /@ {cang1, cang2}
Out[763]=

{{1, 2, 3}, {1, 1, 3}}

In[764]:=

cang1 === cang2
Out[764]=

False

IGraph/M Documentation | 169

The performance of Bliss functions may depend significantly on the choice of splitting heuristics.
In[765]:=

g = LineGraph@GraphData[{"Hadamard", {24, 6}}];

timings = #, First@Timing@IGBlissAutomorphismGroupg, "SplittingHeuristics" # & /@

"First", "FirstSmallest", "FirstLargest", "FirstMaximallyConnected",

"FirstSmallestMaximallyConnected", "FirstLargestMaximallyConnected";

TableFormtimings, TableHeadings None, "Splitting heuristics", "Timing (s)"
Out[767]//TableForm=

Splitting heuristics Timing (s)
First 2.79602
FirstSmallest 9.10916
FirstLargest 1.0737
FirstMaximallyConnected 4.36106
FirstSmallestMaximallyConnected 4.37917
FirstLargestMaximallyConnected 1.0749

Additional examples

Let us visualize the vertex equivalence classes induced by a graph’s automorphism group. Two vertices are considered

equivalent if there is an automorphism that maps one into the other.
In[768]:=

Withg = GraphData"Mycielski", 4,

HighlightGraphg, GroupOrbits@IGBlissAutomorphismGroup[g],

VertexSize Large, GraphStyle "BasicBlack"

Out[768]=

170 | IGraph/M Documentation

Visualize the edge equivalence classes of a polyhedron, induced by its skeleton’s automorphism group.
In[769]:=

mesh = PolyhedronData"TruncatedOctahedron", "BoundaryMeshRegion"

Out[769]=

In[770]:=

With{g = IGMeshGraph[mesh, VertexStyle Black]},

HighlightGraphg,

EdgeList[g]〚#〛 & /@ GroupOrbits@IGBlissAutomorphismGroup@LineGraph[g]

Out[770]=

References

◼ T. Junttila, P. Kaski, Engineering an Efficient Canonical Labeling Tool for Large and Sparse Graphs, 2007 Proceedings of
the Ninth Workshop on Algorithm Engineering and Experiments, doi:10.1137/1.9781611972870.13.

IGraph/M Documentation | 171

https://doi.org/10.1137/1.9781611972870.13

VF2
In[771]:=

? IGVF2*

IGraphM`

IGVF2FindIsomorphisms IGVF2GetIsomorphism IGVF2IsomorphicQ IGVF2SubisomorphicQ

IGVF2FindSubisomorphis-
ms

IGVF2GetSubisomorphis-
m IGVF2IsomorphismCount

IGVF2SubisomorphismC-
ount

VF2 supports vertex coloured and edge coloured graphs. A colour specification consists of one or more of the

"VertexColors" and "EdgeColors" options. Allowed formats for these options are a list of integers, an association

assigning integers to the vertices/edges, or None. When using associations, it is not necessarily to specify a colour for
each vertex/edge. The omitted ones are assumed to have colour 0.

The VF2 algorithm only supports simple graphs.

The following graph has two automorphisms: {1, 2} and {2, 1}.
In[772]:=

g = Graph[{1 2}];

IGVF2IsomorphismCount[g, g]
Out[773]=

2

If we colour one of the vertices, the permutation {2, 1} becomes forbidden, so only one automorphism remains.
In[774]:=

IGVF2IsomorphismCount[{g, "VertexColors" {1, 2}}, {g, "VertexColors" {1, 2}}]
Out[774]=

1

Multigraphs are not directly supported for isomorphism checking, but we can map the multigraph isomorphism problem

into an edge-coloured graph isomorphism one by designating the multiplicity of each edge as its colour.
In[775]:=

g1 = EdgeAdd[PathGraph[Range[5], VertexLabels "Name"], 2 3]
Out[775]=

1 2 3 4 5

In[776]:=

g2 = EdgeAdd[PathGraph[Range[5], VertexLabels "Name"], 4 3]
Out[776]=

1 2 3 4 5

In[777]:=

IGVF2IsomorphicQ[g1, g2]

IGraphM: VF2 does not support non-simple graphs. Consider using IGIsomorphicQ or IGColoredSimpleGraph.

Out[777]=

$Failed

Since g1 and g2 are undirected, we need to bring their edges into a sorted canonical form before counting them. This

ensures that 4 3 and 3 4 are treated as the same edge.
In[778]:=

colors1 = CountsSort /@ EdgeList[g1]

Out[778]=

1 2 1, 2 3 2, 3 4 1, 4 5 1

172 | IGraph/M Documentation

In[779]:=

colors2 = CountsSort /@ EdgeList[g2]

Out[779]=

1 2 1, 2 3 1, 3 4 2, 4 5 1

In[780]:=

IGVF2IsomorphicQ[{Graph@Keys[colors1], "EdgeColors" colors1},

{Graph@Keys[colors2], "EdgeColors" colors2}]
Out[780]=

True

IGIsomorphicQ and IGSubisomorphicQ check multigraph isomorphism in a similar way, based on edge colouring.

References

◼ L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, IEEE Trans. Pattern Anal. Mach. Intell. 26, 1367 (2004).

LAD

The LAD library was developed by Christine Solnon. It is capable of finding subgraphs in a larger graph.

The LAD algorithm does not support multi-edges.
In[781]:=

? IGLAD*

IGraphM`

IGLADFindSubisomorphi-
sms

IGLADGetSubisomorphis-
m IGLADSubisomorphicQ

IGLADSubisomorphismC-
ount

With the "Induced" True option LAD will search for induced subgraphs.
In[782]:=

IGLADSubisomorphicQ ,

Out[782]=

True

In[783]:=

IGLADSubisomorphicQ , , "Induced" True

Out[783]=

False

In[784]:=

IGLADSubisomorphicQ , , "Induced" True

Out[784]=

True

IGraph/M Documentation | 173

http://liris.cnrs.fr/csolnon/LAD.html

Highlight subgraphs in a grid graph.
In[785]:=

g = GridGraph[{3, 3}];

HighlightGraphg, Subgraph[g, #], GraphHighlightStyle "Thick" & /@

UnionSort@*Values /@ IGLADFindSubisomorphismsGridGraph[{2, 2}], g
Out[786]=

 , , ,

Count how many times each vertex of a graph appears at the apex of the following subgraph (motif):

Generate a directed random graph to do the counting in.
In[787]:=

g = RandomGraph{20, 120}, DirectedEdges True
Out[787]=

IGShorthand provides a concise way to input this subgraph.
In[788]:=

motif = IGShorthand["2<->1<->3"]
Out[788]=

2 1 3

This motif has a two-fold symmetry, as revealed by its automorphism group. We divide the final counts by two.
In[789]:=

Counts@Lookup

IGLADFindSubisomorphismsmotif, g, "Induced" True,

1

 IGBlissAutomorphismCountmotif

Out[789]=

13 2, 18 2, 20 4, 12 1, 16 1

174 | IGraph/M Documentation

Check that a graph is claw-free.
In[790]:=

clawFreeQgraph_?UndirectedGraphQ :=

Not@IGLADSubisomorphicQ[

StarGraph[4], (* claw graph *)

graph,

"Induced" True

]

In[791]:=

clawFreeQ /@ GraphData["DodecahedralGraph"], GraphData"TruncatedPrismGraph"

Out[791]=

{False, True}

References

◼ Christine Solnon, AllDifferent-based filtering for subgraph isomorphism, Artificial Intelligence 174 (2010),
doi:10.1016/j.artint.2010.05.002

Isomorphism of coloured graphs

All three included isomorphism algorithms support vertex coloured graphs, and VF2 supports edge coloured graphs as

well. A coloured graph is specified as {g, "VertexColors" …, "EdgeColors" …}, where both vertex and

edge colour specifications are optional. Colours are represented by integers and may be specified in one of the following

ways:

◼ A list of integers, given in the same order as VertexList[g] (or EdgeList[g] if specifying edge colours).

{Graph[{a, b}, {a b}], "VertexColors" {1, 2}}.

◼ An association assigning integers to vertices (or edges). Vertices (or edges) not present in the association are assumed

to have colour 0.

{Graph[{a b}], "VertexColors" a 1, b 2}.

◼ The name of a a vertex (or edge) property. Vertices (or edges) without an assigned property value are assumed to have

colour 0.

{Graph[{Property[a, "color" 1], Property[b, "color" 2]}, {a b}],

"VertexColors" "color"}

◼"VertexColors" None indicates no colouring.

Example. Define a graph along with the colours of its vertices.
In[792]:=

g = CycleGraph[4];

vcols =

1 1, 2 1,

3 2, 4 2

;

IGraph/M Documentation | 175

https://doi.org/10.1016/j.artint.2010.05.002

Visualize it.
In[794]:=

Graphg,

VertexStyle Normal[ColorData[24] /@ vcols],

VertexSize Medium, VertexLabels Placed["Name", Center]

Out[794]=

1

2

3

4

Compute its automorphism group, taking vertex colours into account.
In[795]:=

IGBlissAutomorphismGroup[{g, "VertexColors" vcols}]
Out[795]=

PermutationGroup[{Cycles[{{1, 2}, {3, 4}}]}]

176 | IGraph/M Documentation

Properties related to the automorphism group

The functions in this section test for properties related to a graph’s automorphism group. The summary table below

illustrates the functions on a set of graphs which all have different properties.
In[796]:=

graphs = StarGraph[4], IGSquareLattice{2, 3}, "Periodic" True,

HypercubeGraph[3], GraphData[{"Rook", {4, 4}}], GraphData"ShrikhandeGraph",

GraphData["HoltGraph"], GraphData["Tutte12Cage"], GraphData[{"Paulus", {25, 1}}];

functions =

"regular" IGRegularQ,

"strongly regular" IGStronglyRegularQ, "distance regular" IGDistanceRegularQ,

"vertex transitive" IGVertexTransitiveQ,

"edge transitive" IGEdgeTransitiveQ,

"arc transitive" IGEdgeTransitiveQ@*DirectedGraph,

"distance transitive" IGDistanceTransitiveQ

;

TableForm

ThroughValuesfunctions[#] & /@ graphs,

TableHeadings Show#, ImageSize 50 & /@ graphs, Keysfunctions,

TableDirections Row

 // Style[#, "Text"] &

Out[798]=

regular False True True True True True True True

strongly regular False False False True True False False True

distance regular False False True True True False True True

vertex transitive False True True True True True False False

edge transitive True False True True True True True False

arc transitive False False True True True False False False

distance transitive False False True True False False False False

IGRegularQ
In[799]:=

? IGRegularQ

IGRegularQ[graph] tests if graph is regular, i.e. all vertices have the same degree.
IGRegularQ[graph, k] tests if graph is k-regular, i.e. all vertices have degree k.

IGraph/M Documentation | 177

IGRegularQ checks if a graph is regular. All vertices of a regular graph have the same degrees. In regular directed

graphs, the in- and out-degrees are also equal to each other.
In[800]:=

IGRegularQIGSquareLattice{3, 4}, "Periodic" True
Out[800]=

True

Check if a graph is k-regular for k = 2 and k = 3.
In[801]:=

IGRegularQ[CycleGraph[10], 2]
Out[801]=

True

In[802]:=

IGRegularQ[CycleGraph[10], 3]
Out[802]=

False

The null graph is considered 0-regular.
In[803]:=

IGRegularQ[IGEmptyGraph[]]
Out[803]=

True

Check if a directed graph is regular.
In[804]:=

IGRegularQCycleGraph5, DirectedEdges True

Out[804]=

True

IGRegularQ considers self-loops and multi-edges when computing vertex degrees.

In[805]:=

IGRegularQ

Out[805]=

True

IGStronglyRegularQ
In[806]:=

? IGStronglyRegularQ

IGStronglyRegularQ[graph] tests if graph is strongly regular.

IGStronglyRegularQ checks if a graph is strongly regular. A strongly regular graph is a regular graph where each pair

of connected vertices have the same number of common neighbours, λ, and each pair of unconnected vertices also have

the same number of common neighbours, μ.
In[807]:=

IGStronglyRegularQ@GraphData"ShrikhandeGraph"
Out[807]=

True

178 | IGraph/M Documentation

Hypercube graphs and 3 and higher dimensions are not strongly regular, even though they are regular.
In[808]:=

IGStronglyRegularQ /@ HypercubeGraph /@ Range[2, 4]
Out[808]=

{True, False, False}

Some authors exclude empty and complete graph from the definition, as they satisfy these conditions trivially.
IGStronglyRegularQ returns True for these.

In[809]:=

IGStronglyRegularQ /@ {IGEmptyGraph[5], IGCompleteGraph[6]}
Out[809]=

{True, True}

It also returns True for graphs on 0, 1 and 2 vertices.
In[810]:=

IGStronglyRegularQ /@ IGCompleteGraph /@ Range[0, 2]
Out[810]=

{True, True, True}

Currently, IGStronglyRegularQ does not support directed graphs.

In[811]:=

IGStronglyRegularQ@Graph[{1 2}]

IGStronglyRegularQ: Directed graphs are not supported.

Out[811]=

$Failed

IGStronglyRegularParameters
In[812]:=

? IGStronglyRegularParameters

IGStronglyRegularParameters [graph] returns the parameters
{v, k, λ, μ} of a strongly regular graph. For non-strongly-regular graphs {} is returned.

IGStronglyRegularParameters returns the parameters (v, k, λ, μ) of a strongly regular graph. v is the number of

vertices, k the degree of the vertices, λ the number of common neighbours of connected vertices and μ the number of
common neighbours of unconnected vertices.

In[813]:=

IGStronglyRegularParameters[PetersenGraph[]]
Out[813]=

{10, 3, 0, 1}

In[814]:=

IGStronglyRegularParameters[CycleGraph[5]]
Out[814]=

{5, 2, 0, 1}

The parameters of a strongly regular graph satisfy the equation (v - k - 1)μ = k(k - λ - 1).
In[815]:=

{v, k, lambda, mu} = IGStronglyRegularParameters[GraphData[{"Paley", 101}]]
Out[815]=

{101, 50, 24, 25}

IGraph/M Documentation | 179

In[816]:=

(v - k - 1) mu k (k - lambda - 1)
Out[816]=

True

λ and μ are not well-defined for empty and complete graphs, respectively. In these cases, 0 is returned.
In[817]:=

IGStronglyRegularParameters /@ {IGEmptyGraph[5], IGCompleteGraph[6]}
Out[817]=

{{5, 0, 0, 0}, {6, 5, 4, 0}}

For non-strongly-regular graphs, {} is returned.
In[818]:=

IGStronglyRegularParameters[HypercubeGraph[3]]
Out[818]=

{}

IGDistanceRegularQ
In[819]:=

? IGDistanceRegularQ

IGDistanceRegularQ [graph] tests if graph is distance regular.

IGDistanceRegularGraph checks if a graph is distance regular.

In[820]:=

IGDistanceRegularQ@HypercubeGraph[5]
Out[820]=

True

In[821]:=

IGDistanceRegularQ@IGSquareLattice{2, 5}, "Periodic" True
Out[821]=

False

A distance regular graph with a diameter of 2 is also strongly regular.
In[822]:=

g = GraphData[{"Paley", 13}]
Out[822]=

180 | IGraph/M Documentation

In[823]:=

IGDiameter[g], IGDistanceRegularQ[g], IGStronglyRegularQ[g]

Out[823]=

{2, True, True}

The Shrikhande graph is the smallest graph that is distance regular, but not distance transitive.
In[824]:=

ThroughIGDistanceRegularQ, IGDistanceTransitiveQGraphData"ShrikhandeGraph"

Out[824]=

{True, False}

A disconnected graph is distance regular if its components are distance regular and they are co-spectral. The following

graphs are co-spectral:
In[825]:=

components = GraphData[{"Rook", {4, 4}}], GraphData"ShrikhandeGraph"

Out[825]=

 ,

In[826]:=

Eigenvalues /@ AdjacencyMatrix /@ components
Out[826]=

{{6, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2},

{6, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2}}

They are both distance regular with the same intersection array.
In[827]:=

IGIntersectionArray /@ components
Out[827]=

{{{6, 3}, {1, 2}}, {{6, 3}, {1, 2}}}

Thus their disjoint union is also distance regular.
In[828]:=

IGDistanceRegularQ@IGDisjointUnion[components]
Out[828]=

True

All distance transitive graphs are also distance regular, but the reverse is not true.
In[829]:=

IGDistanceTransitiveQ /@ components
Out[829]=

{True, False}

IGDistanceRegularQ does not currently support directed graphs or non-simple graphs.

In[830]:=

IGDistanceRegularQ[Graph[{1 2}]]

IGDistanceRegularQ: Directed graphs are not supported.

Out[830]=

$Failed

IGraph/M Documentation | 181

In[831]:=

IGDistanceRegularQ[Graph[{1 2, 1 2}]]

IGDistanceRegularQ: Non-simple graphs are not supported.

Out[831]=

$Failed

IGIntersectionArray
In[832]:=

? IGIntersectionArray

IGIntersectionArray[graph] computes the intersection array
{b, c} of a distance regular graph. For non-distance-regular graphs {} is returned.

In[833]:=

IGIntersectionArray@GraphData["IcosahedralGraph"]
Out[833]=

{{5, 2, 1}, {1, 2, 5}}

In[834]:=

IGIntersectionArray@GraphData"SuzukiGraph"

Out[834]=

{{416, 315}, {1, 96}}

In[835]:=

IGIntersectionArray@CycleGraph[6]
Out[835]=

{{2, 1, 1}, {1, 1, 2}}

For non-distance-regular graphs, {} is returned.
In[836]:=

IGIntersectionArrayGridGraph[{3, 3}]

Out[836]=

{}

IGIntersectionArray does not currently support directed graphs.
In[837]:=

IGIntersectionArray[Graph[{1 2}]]

IGDistanceRegularQ: Directed graphs are not supported.

Out[837]=

$Failed

IGVertexTransitiveQ
In[838]:=

? IGVertexTransitiveQ

IGVertexTransitiveQ [graph] tests if graph is vertex transitive.

182 | IGraph/M Documentation

IGVertexTransitiveQ checks if a graph is vertex transitive, i.e. if any vertex can be mapped into any other by some

automorphism of the graph.
In[839]:=

IGVertexTransitiveQ

Out[839]=

True

In[840]:=

IGVertexTransitiveQ[]

Out[840]=

False

All Cayley graphs are vertex transitive.
In[841]:=

cg = CayleyGraph@IGBlissAutomorphismGroup@IGLCF[{2, -1, 2}, 3]
Out[841]=

In[842]:=

IGVertexTransitiveQ[cg]
Out[842]=

True

IGEdgeTransitiveQ
In[843]:=

? IGEdgeTransitiveQ

IGEdgeTransitiveQ [graph] tests if graph is edge transitive.

IGraph/M Documentation | 183

IGEdgeTransitiveQ checks if a graph is edge transitive, i.e. if any edge can be mapped into any other by some

automorphism of the graph.
In[844]:=

IGEdgeTransitiveQ

Out[844]=

False

In[845]:=

IGEdgeTransitiveQ[]

Out[845]=

True

The Folkman graph is not vertex transitive but it is edge transitive.
In[846]:=

ThroughIGVertexTransitiveQ, IGEdgeTransitiveQ@GraphData["FolkmanGraph"]

Out[846]=

{False, True}

IGEdgeTransitiveQ takes into account edge directions.

In[847]:=

IGEdgeTransitiveQ@Graph[{1 2, 2 3}]
Out[847]=

False

In[848]:=

IGEdgeTransitiveQ@Graph[{1 2, 3 2}]
Out[848]=

True

Arc transitivity in an undirected graph refers to edge transitivity when each undirected edge is replaced by two opposite

directed edges.
In[849]:=

arcTransitiveQgraph_?UndirectedGraphQ := IGEdgeTransitiveQ@DirectedGraph[graph]

Some graphs are edge transitive, but not arc transitive.
In[850]:=

IGEdgeTransitiveQ@GraphData[{"Bouwer", {2, 4, 15}}]
Out[850]=

True

In[851]:=

arcTransitiveQ@GraphData[{"Bouwer", {2, 4, 15}}]
Out[851]=

False

184 | IGraph/M Documentation

Most graphs are edge transitive if their line graphs are vertex transitive. The exceptions are disjoint unions of the 3-star
and 3-cycle. These two graphs have the same line graph, but they are not isomorphic.

In[852]:=

g = ;

In[853]:=

IGEdgeTransitiveQ[g], IGVertexTransitiveQ@LineGraph[g]
Out[853]=

{False, True}

IGSymmetricQ
In[854]:=

? IGSymmetricQ

IGSymmetricQ[graph] tests if graph is symmetric, i.e. if it is both vertex transitive and edge transitive.

IGSymmetricQ checks if a graph is both vertex transitive and edge transitive. Note that this property is distinct from

being arc transitive, which is the definition used for “symmetric” by some authors.
In[855]:=

IGSymmetricQ[GraphData["DodecahedralGraph"]]
Out[855]=

True

IGraph/M Documentation | 185

Make a table of symmetric graphs up to size 7:
In[856]:=

Grid

Table

Graph#, ImageSize 50, PlotTheme "Business" & /@

SelectGraphData /@ GraphData[k], IGSymmetricQ,

{k, 1, 7}

, Frame All, ItemSize All
Out[856]=

186 | IGraph/M Documentation

Some authors use the term symmetric graph to refer to arc transitive graphs. Arc transitivity can be checked using

IGEdgeTransitiveQ@DirectedGraph[#] &. All arc-transitive graphs are both vertex- and edge-transitive, but the

reverse is not true. The smallest graph that is both vertex- and edge-transitive, but not arc-transitive, is the 27-vertex

Doyle graph, also known as the Holt graph.
In[857]:=

doyle = GraphData["DoyleGraph"]
Out[857]=

In[858]:=

IGVertexTransitiveQ[doyle], IGEdgeTransitiveQ[doyle]

Out[858]=

{True, True}

In[859]:=

IGEdgeTransitiveQ@DirectedGraph[doyle]
Out[859]=

False

IGDistanceTransitiveQ
In[860]:=

? IGDistanceTransitiveQ

IGDistanceTransitiveQ [graph] tests if graph is distance-transitive.

IGDistanceTransitiveQ checks if a graph is distance transitive. In a distance transitive graph, any two ordered pairs

of vertices which are the same distance apart can be mapped into each other by some automorphism.

IGraph/M Documentation | 187

All Platonic graphs are distance transitive.
In[861]:=

IGMeshGraph@PolyhedronData#, "BoundaryMeshRegion" & /@ PolyhedronData"Platonic"

Out[861]=

 , ,

, ,

In[862]:=

IGDistanceTransitiveQ /@ %

Out[862]=

{True, True, True, True, True}

Some graphs are symmetric, but not distance transitive.
In[863]:=

g = GraphData"Circulant", {10, {1, 4}}

Out[863]=

In[864]:=

IGSymmetricQ[g], IGDistanceTransitiveQ[g]

Out[864]=

{True, False}

188 | IGraph/M Documentation

IGDistanceTransitiveQ does not exclude non-connected graphs.
In[865]:=

IGDistanceTransitiveQ

Out[865]=

True

IGDistanceTransitiveQ works with directed graphs.
In[866]:=

g = With{n = 11},

RelationGraphMemberQRest@Union@Mod[Range[n]^2, n], Mod[#1 - #2, n] &, Range[n] - 1

Out[866]=

In[867]:=

IGDistanceTransitiveQ[g]
Out[867]=

True

The following directed graph is vertex transitive, but not distance transitive.
In[868]:=

IGDistanceTransitiveQ

Out[868]=

False

Homeomorphism
In[869]:=

? IGHomeomorphicQ

IGHomeomorphicQ[graph1, graph2] tests if graph1 and graph2 are homeomorphic. Edge directions are ignored.

IGHomeomorphicQ tests if two graphs are homeomorphic, i.e. whether they have the same topological structure. Two

graphs G1 and G2 are homeomorphic if there is an isomorphism from a subdivision of G1 to a subdivision of G2.

IGHomeomorphicQ[g1, g2] is effectively implemented as

IGIsomorphicQ[IGSmoothen[g1], IGSmoothen[g2]].

IGraph/M Documentation | 189

The following graphs are homeomorphic.
In[870]:=

IGHomeomorphicQ ,

Out[870]=

True

They smoothen to the same graph.
In[871]:=

IGSmoothen /@ ,

Out[871]=

 ,

Any two cycle graphs are homeomorphic.
In[872]:=

IGHomeomorphicQ[CycleGraph[5], CycleGraph[9]]
Out[872]=

True

A cycle and a path graph are not homeomorphic.
In[873]:=

IGHomeomorphicQ[CycleGraph[5], PathGraph@Range[5]]
Out[873]=

False

A triangular and a square lattice on the same number of vertices are, in general, topologically different.
In[874]:=

IGHomeomorphicQIGSquareLattice[{3, 3}], IGTriangularLattice[{3, 3}]

Out[874]=

False

When testing empirical graphs for equivalence, it is often useful to remove tree-like components. For example, the face-
face and the face-edge adjacency graphs of a geometric mesh are equivalent, save for the tree-like components.

In[875]:=

mesh = IGLatticeMesh["SnubSquare", {3, 3}];

190 | IGraph/M Documentation

In[876]:=

ffg = IGMeshCellAdjacencyGraphmesh, 2, VertexCoordinates Automatic

Out[876]=

In[877]:=

feg = IGMeshCellAdjacencyGraphmesh, 1, 2, VertexCoordinates Automatic
Out[877]=

In[878]:=

IGHomeomorphicQfeg, ffg

Out[878]=

False

In[879]:=

feg = VertexDeletefeg, IGTreelikeComponentsfeg

Out[879]=

IGraph/M Documentation | 191

In[880]:=

ffg = VertexDeleteffg, IGTreelikeComponentsffg

Out[880]=

In[881]:=

IGHomeomorphicQfeg, ffg

Out[881]=

True

Other functions

IGSelfComplementaryQ
In[882]:=

? IGSelfComplementaryQ

IGSelfComplementaryQ[graph] tests if graph is self-complementary.

A graph is called self-complementary if it is isomorphic with its complement.

The 4-vertex path graph is self-complementary.
In[883]:=

IGSelfComplementaryQ[PathGraph@Range[4]]
Out[883]=

True

Find all 3-vertex self-complementary directed graphs.
In[884]:=

SelectIGData"AllDirectedGraphs", 3, IGSelfComplementaryQ

Out[884]=

 , , ,

192 | IGraph/M Documentation

IGColoredSimpleGraph
In[885]:=

? IGColoredSimpleGraph

IGColoredSimpleGraph[graph] encodes a non-simple graph as an edge- and vertex-colored simple graph, returned as
{simpleGraph, "VertexColors" -> vcol, "EdgeColors" -> ecol}where vertex colors represent self-loopmultiplicities
and edge colors represent edge multiplicities. The output is suitable for use by isomorphism functions.

IGColoredSimpleGraph is a helper function that encodes a non-simple graph (i.e a graph with self-loops or multi-
edges) into an edge- and vertex-colored simple graph. The coloured simple graph can be used directly as an input to

coloured isomorphism checking functions such as IGVF2IsomorphicQ.

The vertex colours are computed as the multiplicity of self-loops at each vertex. The edge colours are computed as the

multiplicities or non-loop edges.

The following graphs are not simple and cannot be used with IGVF2IsomorphicQ directly.
In[886]:=

{g1, g2, g3} = A

B

C

D

,
2

1

3

4
, A

B

C

D

;

In[887]:=

IGVF2IsomorphicQ[g1, g2]

IGraphM: VF2 does not support non-simple graphs. Consider using IGIsomorphicQ or IGColoredSimpleGraph.

Out[887]=

$Failed

IGColoredSimpleGraph can encode them as coloured graphs. Its output can be supplied directly to

IGVF2IsomorphicQ.
In[888]:=

IGColoredSimpleGraph[g1]
Out[888]=

 , VertexColors {1, 0, 0, 0}, EdgeColors {1, 1, 1, 2}

Now can can determine that g1 is isomorphic to g2, but not to g3.

In[889]:=

IGVF2IsomorphicQIGColoredSimpleGraph[g1], IGColoredSimpleGraph[g2]

Out[889]=

True

In[890]:=

IGVF2IsomorphicQIGColoredSimpleGraph[g1], IGColoredSimpleGraph[g3]

Out[890]=

False

IGraph/M Documentation | 193

When searching for subgraphs in multigraphs with this method, be aware that a match occurs only if the edge multiplici-
ties are the same. This sort of matching is useful e.g. in substructure search chemistry, where a double bond must only

match another double bond, but not a single one.
In[891]:=

IGVF2SubisomorphicQIGColoredSimpleGraph[], IGColoredSimpleGraph

Out[891]=

False

In[892]:=

IGVF2SubisomorphicQIGColoredSimpleGraph[], IGColoredSimpleGraph

Out[892]=

True

Use IGSubisomorphicQ to match any subgraph.
In[893]:=

IGSubisomorphicQ ,

Out[893]=

True

Maximum flow and minimum cut

Maximum flow

IGMaximumFlowValue
In[894]:=

? IGMaximumFlowValue

IGMaximumFlowValue[graph, s, t] gives the value of the maximum flow from s to t.

IGMaximumFlowValue is equivalent to IGMinimumCutValue except that it uses the EdgeCapacity property

instead of EdgeWeight.

Edge capacities are taken from the EdgeCapacity property.

In[895]:=

g = 1

2 3

4

56

;

IGEdgePropEdgeCapacity[g]

Out[896]=

{3.5, 2, 1, 2.5, 5, 1, 3.5, 4}

194 | IGraph/M Documentation

In[897]:=

IGMaximumFlowValue[g, 1, 4]
Out[897]=

3.5

IGMaximumFlowMatrix
In[898]:=

? IGMaximumFlowMatrix

IGMaximumFlowMatrix[graph, s, t] gives the flowmatrix of a maximum flow from s to t.

Element Fij of the flow matrix is the flow through the edge connecting the ith node to the jth one. In an undirected graph,

Fij = -Fij.

Edge capacities are taken from the EdgeCapacity property.

Let us take a directed graph with edge capacities set ...
In[899]:=

g = 1

2 3

4

56

;

In[900]:=

IGEdgePropEdgeCapacity[g]

Out[900]=

{3.5, 2, 1, 2.5, 5, 1, 3.5, 4}

... and compute the maximum flow between two of its vertices.
In[901]:=

flowMat = IGMaximumFlowMatrix[g, 1, 4]
Out[901]=

SparseArray
Specified elements: 6

Dimensions: {6, 6}

The result is returned as a sparse matrix containing the flows through each edge.
In[902]:=

MatrixFormflowMat

Out[902]//MatrixForm=

0. 3.5 0. 0. 0. 0.
0. 0. 1. 0. 0. 2.5
0. 0. 0. 1. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 2.5 0. 0.
0. 0. 0. 0. 2.5 0.

IGraph/M Documentation | 195

If the input is an undirected graph, the flow matrix contains entries of opposing sign for the two directions along each

edge.
In[903]:=

IGMaximumFlowMatrixUndirectedGraph[g], 1, 4 // MatrixForm

Out[903]//MatrixForm=

0. 2.5 0. 0. 0. 1.
-2.5 0. 2. 0. 0. 0.5
0. -2. 0. 1. 1. 0.
0. 0. -1. 0. -2.5 0.
0. 0. -1. 2.5 0. -1.5
-1. -0.5 0. 0. 1.5 0.

Minimum edge cuts

IGMinimumCut
In[904]:=

? IGMinimumCut

IGMinimumCut[graph] gives a minimum edge cut in a weighted graph.
IGMinimumCut[graph, s, t] gives a minimum s-t edge cut in a weighted graph.

IGMinimumCut finds a single minimum edge cut in a weighted graph. To find all minimum cuts between two given

vertices, use IGFindMinimumCuts.

IGMinimumCutValue
In[905]:=

? IGMinimumCutValue

IGMinimumCutValue[graph] gives the smallest sum of weights corresponding to an edge cut in graph.
IGMinimumCutValue[graph, s, t] gives the smallest sum of weights corresponding to an s-t edge cut in graph.

Unlike IGEdgeConnectivity, IGMinimumCutValue takes weights into account.

In[906]:=

IGMinimumCutValueGraph{1 2, 2 3}, EdgeWeight {3.5, 5.6}

Out[906]=

3.5

The minimum cut value of the null graph and singleton graph are returned as 0 and ∞, respectively.
In[907]:=

IGMinimumCutValue /@ {IGEmptyGraph[0], IGEmptyGraph[1]}
Out[907]=

{0., ∞}

IGGomoryHuTree
In[908]:=

? IGGomoryHuTree

IGGomoryHuTree[graph] gives the Gomory–Hu tree of a graph.

The Gomory–Hu tree is a weighted tree that encodes the minimum cuts between all pairs of vertices of an undirected

graph. The Gomory–Hu tree has the same vertices as the graph it characterizes. The minimum cut between an s-t pair of
the graph has the same size as smallest edge weight on the path from s to t in the Gomory–Hu tree.

196 | IGraph/M Documentation

Weighted graphs are supported.
In[909]:=

g =

12

34

5

6

7

8
9

10
;

In[910]:=

t = IGGomoryHuTreeg,

EdgeLabels "EdgeWeight", VertexShapeFunction "Name"

Out[910]=

3.

5.

4. 2.

4. 3. 3. 3. 4.

1

2

3

4

5

6 7 8 9

10

The path from 1 to 9 is 1 2 5 9 and has the weights {3, 5, 4}. The smallest one, 3, is the minimum value of a

cut separating 1 from 9.
In[911]:=

IGMinimumCutValue[g, 1, 9], IGMinimumCutValue[t, 1, 9]

Out[911]=

{3., 3.}

Cohesive blocks
In[912]:=

? IGCohesiveBlocks

IGCohesiveBlocks[graph] gives the cohesive block structure of a simple undirected graph.

The following examples are based on the ones in the R/igraph documentation.

This is the network from the Moody-White paper:

◼ J. Moody and D. R. White. Structural cohesion and embeddedness: A hierarchical concept of social groups. American

Sociological Review, 68(1):103–127, Feb 2003.
In[913]:=

mw = Graph[{"1" "2", "1" "3", "1" "4", "1" "5", "1" "6", "2" "3", "2" "4", "2" "5",

"2" "7", "3" "4", "3" "6", "3" "7", "4" "5", "4" "6", "4" "7", "5" "6",

"5" "7", "5" "21", "6" "7", "7" "8", "7" "11", "7" "14", "7" "19",

"8" "9", "8" "11", "8" "14", "9" "10", "10" "12", "10" "13", "11" "12",

"11" "14", "12" "16", "13" "16", "14" "15", "15" "16", "17" "18",

"17" "19", "17" "20", "18" "20", "18" "21", "19" "20", "19" "22",

"19" "23", "20" "21", "21" "22", "21" "23", "22" "23"}, VertexLabels "Name"];

In[914]:=

blocks, cohesion = IGCohesiveBlocks[mw]

Out[914]=

{{{1, 2, 3, 4, 5, 6, 7, 21, 8, 11, 14, 19, 9, 10, 12, 13, 16, 15, 17, 18, 20, 22, 23},

{1, 2, 3, 4, 5, 6, 7, 21, 19, 17, 18, 20, 22, 23}, {7, 8, 11, 14, 9, 10, 12, 13, 16, 15},

{1, 2, 3, 4, 5, 6, 7}, {7, 8, 11, 14}}, {1, 2, 2, 5, 3}}

IGraph/M Documentation | 197

http://igraph.org/r/doc/cohesive_blocks.html

In[915]:=

CommunityGraphPlotmw, Rest@blocks,

CommunityRegionStyle TableDirectiveOpacity[0.5], ColorData[96]i, i, Length[blocks] - 1

Out[915]=

1
23

4

5
6

7
21

8

11

14

19

9
10

1213

16

15

17
1820

22

23

In[916]:=

cohesion
Out[916]=

{1, 2, 2, 5, 3}

Science camp network:
In[917]:=

sc = Graph"Pauline" "Jennie", "Pauline" "Ann", "Jennie" "Ann", "Jennie" "Michael",

"Michael" "Ann", "Holly" "Jennie", "Jennie" "Lee", "Michael" "Lee",

"Harry" "Bert", "Harry" "Don", "Don" "Bert", "Gery" "Russ", "Russ" "Bert",

"Michael" "John", "Gery" "John", "Russ" "John", "Holly" "Pam", "Pam" "Carol",

"Holly" "Carol", "Holly" "Bill", "Bill" "Pauline", "Bill" "Michael",

"Bill" "Lee", "Harry" "Steve", "Steve" "Don", "Steve" "Bert", "Gery" "Steve",

"Russ" "Steve", "Pam" "Brazey", "Brazey" "Carol", "Pam" "Pat", "Brazey" "Pat",

"Carol" "Pat", "Holly" "Pat", "Gery" "Pat", VertexLabels "Name";

In[918]:=

blocks, cohesion = IGCohesiveBlocks[sc]
Out[918]=

{{{Pauline, Jennie, Ann, Michael, Holly, Lee, Harry, Bert, Don, Gery,

Russ, John, Pam, Carol, Bill, Steve, Brazey, Pat}, {Harry, Bert, Don, Steve},

{Holly, Pam, Carol, Brazey, Pat}, {Pauline, Jennie, Ann, Michael, Lee, Bill}}, {2, 3, 3, 3}}

198 | IGraph/M Documentation

In[919]:=

CommunityGraphPlotsc, Rest@blocks, CommunityRegionStyle ColorData[96], ImageSize Large

Out[919]=

Pauline Jennie

Ann

Michael

Holly

Lee

Harry

Bert Don

Gery

Russ

John

Pam Carol

Bill

Steve

Brazey

Pat

Cliques and independent vertex sets
In[920]:=

? IG*Clique*

IGraphM`

IGCliqueCover IGLargestCliques IGMaximalWeightedCliques

IGCliqueCoverNumber IGLargestWeightedCliques IGWeightedCliqueNumber

IGCliqueNumber IGMaximalCliques IGWeightedCliques

IGCliques IGMaximalCliquesCount

IGCliqueSizeCounts IGMaximalCliqueSizeCounts

A clique is a fully connected subgraph. An independent vertex set is a subset of a graph’s vertices with no connections

between them.

Counting cliques

Mathematica’s FindClique function only finds maximal cliques. IGraph/M provides functions for finding or counting all
cliques, i.e. complete subgraphs, of a graph.

In[921]:=

g = ExampleData"NetworkGraph", "CoauthorshipsInNetworkScience";

In[922]:=

{VertexCount[g], EdgeCount[g]}
Out[922]=

{1589, 2742}

IGraph/M Documentation | 199

Simply counting cliques is much more memory efficient (and faster) than returning all of them.
In[923]:=

IGCliqueSizeCounts[g]
Out[923]=

{1589, 2742, 3764, 7159, 17314, 39906, 78055, 126140, 167993,

184759, 167960, 125970, 77520, 38760, 15504, 4845, 1140, 190, 20, 1}

In[924]:=

BarChart[%, ChartLabels Range@Length[%]]
Out[924]=

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

50000

100000

150000

In[925]:=

IGMaximalCliqueSizeCounts[g]
Out[925]=

{128, 221, 195, 108, 52, 19, 3, 8, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}

In[926]:=

BarChart[%, ChartLabels Range@Length[%]]
Out[926]=

1 2 3 4 5 6 7 8 9 1011 121314151617181920
0

50

100

150

200

In[927]:=

IGLargestCliques[g]
Out[927]=

V. Narayan, L. Giot, J. Rothberg, S. Fields, M. Johnston, M. Yang, G. Vijayadamodar,

T. Kalbfleisch, D. Conover, B. Godwin, Y. Li, A. Qureshiemili, P. Pochart,

M. Srinivasan, D. Lockshon, J. Knight, R. Judson, T. Mansfield, G. Cagney, P. Uetz

200 | IGraph/M Documentation

Cliques in directed graphs

The clique finder in IGraph/M ignores edge directions.
In[928]:=

g = RandomGraph{10, 60}, DirectedEdges True

Out[928]=

In[929]:=

IGMaximalCliques[g]

IGraphM: src/cliques/maximal_cliques.c:269 - Edge directions are ignored for maximal clique calculation.

Out[929]=

{{7, 2, 8, 6, 5, 3}, {2, 1, 10, 8, 6, 5, 4, 3}, {2, 1, 10, 8, 6, 5, 4, 9}}

To find cliques in directed graphs, convert them to undirected and keep mutual (bidirectional) edges only.
In[930]:=

IGMaximalCliques@IGUndirectedGraph[g, "Mutual"]
Out[930]=

{{2, 7}, {2, 3, 4}, {6, 1, 10}, {7, 5}, {5, 4, 3}, {5, 4, 10, 1}, {8, 4, 3}, {8, 4, 9}, {9, 1, 10, 4}}

Clique cover
In[931]:=

? IGCliqueCover

IGCliqueCover[graph] gives a minimum clique cover of graph, i.e. a partitioning of its vertices into a smallest number of cliques.

In[932]:=

? IGCliqueCoverNumber

IGCliqueCoverNumber[graphs] gives the clique vertex cover number of graph.

A clique cover of a graph is a partitioning of its vertices such that each partition forms a clique. IGCliqueCover finds a

minimum clique cover, i.e. a partitioning into a smallest number of cliques.

The clique cover number of a graph is the smallest number of cliques that can be used to cover its vertices.

Available Method option values are:

◼"Minimum" finds a minimum clique cover.

◼"Heuristic" is much faster, but the result is not typically a minimum cover.

IGraph/M Documentation | 201

Compute a minimum clique cover of a random graph.
In[933]:=

g = RandomGraph[{10, 20}]
Out[933]=

In[934]:=

IGCliqueCover[g]
Out[934]=

{{1, 2, 6, 7}, {3, 5, 9}, {4, 10}, {8}}

Visualize the clique cover.
In[935]:=

HighlightGraphg, IGCliqueCover[g], VertexSize Large

Out[935]=

Find the clique cover number without returning a cover.
In[936]:=

IGCliqueCoverNumber[g]
Out[936]=

4

The clique cover problem is equivalent to the colouring of the complement graph. IGCliqueCover is effectively

implemented as
In[937]:=

IGMembershipToPartitions[g]@IGMinimumVertexColoring@GraphComplement[g]
Out[937]=

{{1, 2, 6, 7}, {3, 5, 9}, {4, 10}, {8}}

For difficult problems, it may be useful to use IGMinimumVertexColoring or IGVertexColoring directly instead

of IGCliqueCover, and tune their options to achieve better performance. See the "ForcedColoring" option of

IGMinimumVertexColoring on how to do this.

202 | IGraph/M Documentation

Reconstruct bipartite graph of co-occurrence network
In[938]:=

g = ExampleData"NetworkGraph", "LesMiserables"
Out[938]=

In[939]:=

ExampleData"NetworkGraph", "LesMiserables", "LongDescription"
Out[939]=

Coappearance network of characters in the novel

Les Miserables. EdgeWeight describes the number of coappearance.

The maximal cliques of the graph can approximate the scenes in which characters appear together.
In[940]:=

cliques = IGMaximalCliques[g];

We can construct a bipartite graph of connections between potential scenes and characters
In[941]:=

IGLayoutBipartite

Graph@CatenateThread /@ ThreadRange@Lengthcliques cliques,

VertexSize 0.5, ImageSize 220

 // IGVertexMapPlaced#, IfIntegerQ[#], Before, After &, VertexLabels VertexList

Out[941]=

2

Gavroche

18 Mother Plutarch

Mabeuf

22
Child2

Child1

32

Anzelma

Eponine

38
Cochepaille

Chenildieu

Brevet

Champmathieu

Judge

43
Blacheville

Zephine
Dahlia

Favourite

Fameuil

Listolier

44

Mme. Hucheloup

Grantaire

Joly

Bossuet

Bahorel

Courfeyrac

Enjolras

Gueulemer

47

48 Brujon

Montparnasse

49

50

51

52

53

54

55

57

58

Feuilly
Combeferre

59

Prouvaire

IGraph/M Documentation | 203

1 Countess De Lo

Myriel

Boulatruelle

Thenardier

3

Scaufflaire

Valjean

4 Mlle Vaubois

Mlle Gillenormand

5 Gribier

Fauchelevent

6

Mme. Burgon

7

Jondrette

8 Cravatte

9 Napoleon
10 Count

11

Old Man

12

Labarre

13 Champtercier

14

Mme. De R

15

Isabeau

16

Gervais

17 Geborand

19

Pontmercy

Mme. Pontmercy

20

Marius

21

Mother Innocent

23

Marguerite

Fantine

24

Baroness T

Gillenormand

25

26

Magnon

27

Mme. Thenardier

28

Javert

29

Perpetue

Simplice

30

Woman1

31

Woman2

Cosette
33

34 Mme. Magloire

Mlle Baptistine

35

Toussaint

36

Lt. Gillenormand

37

Bamatabois

39

Tholomyes

40

41

42

45

46

Claquesous

Babet

Gueulemer

56

Graphlet decomposition

Note: The term “graphlet” is used for multiple unrelated concepts in the literature. This section deals with decomposing

weighted graphs into cliques. If you are looking to count induced subgraphs, see the IGMotifs function.
In[942]:=

? IGGraphlets

IGGraphlets[graph] decomposes a weighted graph into a sum of cliques.

In[943]:=

? IGGraphletBasis

IGGraphletBasis[graph] computes a candidate clique basis.

204 | IGraph/M Documentation

In[944]:=

? IGGraphletProject

IGGraphletProject[graph, cliques] projects a weighted graph onto the given clique basis.

In[945]:=

g = IGShorthand"A,B,D,E,C, A-B-C-A, C-E-D-B, D-C, E-B",

EdgeWeight {2, 3, 2, 4, 4, 1, 4, 1},

EdgeLabels "EdgeWeight", VertexLabels None,

VertexShapeFunction "Name", PerformanceGoal "Quality",

GraphLayout "CircularEmbedding"

Out[945]=

2

2

1

13

44

4

A

B

D

EC

In[946]:=

basis = IGGraphletBasis[g]
Out[946]=

{A, B, C} 2., {B, D, E, C} 1., {B, C} 3., {D, E, C} 4.

In[947]:=

IGGraphletProjectg, Keysbasis

Out[947]=

{A, B, C} 0.925543, {B, D, E, C} 0.861478, {B, C} 2.90881 × 10-253, {D, E, C} 1.13842

In[948]:=

IGGraphlets[g]
Out[948]=

{D, E, C} 1.13842, {A, B, C} 0.925543, {B, D, E, C} 0.861478, {B, C} 2.90881 × 10-253

References

◼Hossein Azari Soufiani and Edoardo M Airoldi, Graphlet decomposition of a weighted network,
https://arxiv.org/abs/1203.2821

IGraph/M Documentation | 205

https://arxiv.org/abs/1203.2821

Layout algorithms
The following functions are available:

In[949]:=

? IGLayout*

IGraphM`

IGLayoutBipartite IGLayoutFruchtermanReingold3D IGLayoutRandom

IGLayoutCircle IGLayoutGEM IGLayoutReingoldTilford

IGLayoutDavidsonHarel IGLayoutGraphOpt IGLayoutReingoldTilfordCircular

IGLayoutDrL IGLayoutKamadaKawai IGLayoutSphere

IGLayoutDrL3D IGLayoutKamadaKawai3D IGLayoutTutte

IGLayoutFruchtermanReingold IGLayoutPlanar

If you are looking for the Sugiyama layout from igraph, try the built-in

GraphLayout "LayeredDigraphEmbedding", or LayeredGraphPlot. These are also based on the Sugiyama

algorithm.

Common options and examples

Layout functions also take any standard Graph option.

Many layout algorithms take the following options:

"MaxIterations" controls either the maximum number of iterations performed by the algorithm or the exact number
of iterations, depending on the specific algorithm and settings. The option name is the same for all functions to make it
easier to interchange them when visualizing dynamic graphs.

"Align" True aligns the output horizontally. Examples:

In[950]:=

IGLayoutFruchtermanReingoldIGSquareLattice[{2, 4}](*, "Align" True is the default *),

IGLayoutFruchtermanReingoldIGSquareLattice[{2, 4}], "Align" False
Out[950]=

 ,

206 | IGraph/M Documentation

"Continue" True allows using existing vertex coordinates as starting points for algorithms that update vertex

positions incrementally. We can use this to visualize how the layout algorithms work …

In[951]:=

g = IGLayoutRandom@RandomGraphBarabasiAlbertGraphDistribution[100, 1];

ListAnimate@

NestListIGLayoutGraphOpt#, "Continue" True, "MaxIterations" 80, "Align" False &, g, 40

Out[952]=

IGraph/M Documentation | 207

… or to visualize dynamic graph processes such as adding edges to the graph one by one:
In[953]:=

g = IGLayoutKamadaKawai@Graph[Range[25], {1 25}, VertexLabels "Name"];

ListAnimate@NestList

IGLayoutKamadaKawaiEdgeAdd#, UndirectedEdge @@ RandomSampleVertexList[#], 2,

"MaxIterations" 15, "Continue" True, "Align" False &,

g,

30

Out[954]=

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20

21
22

23

24

25

Visualize a planar graph without edge crossings using the Davidson–Harel simulated annealing method, and taking

starting coordinates from GraphLayout "PlanarEmbedding".

In[955]:=

g = Graph@GraphData{"Fullerene", {60, 1}}, "EdgeList"

Out[955]=

208 | IGraph/M Documentation

This layout avoids crossings, but it is not pleasing:
In[956]:=

Graphg, GraphLayout "PlanarEmbedding"

Out[956]=

We can post process it while avoiding the introduction of any edge crossings:
In[957]:=

IGLayoutDavidsonHarel

IGVertexMap# &, VertexCoordinates Rescale@GraphEmbedding#, "PlanarEmbedding" &, g,

"Continue" True, "EdgeCrossingWeight" 1000

Out[957]=

Weighted graphs

Several of the graph layout algorithms in igraph can take edge weights into accounts. How the weights are used during

layout differs between them.

◼IGLayoutFruchtermanReingold multiplies the attraction between vertices by the weights. Thus higher weights

result in shorter edges.

◼IGLayoutKamadaKawai produces longer edges for higher weights

Constraining vertex positions

Graph layout functions which have a "Constraints" option allow fixing the position of some vertices, or constraining

them into a box. This is an experimental feature that may change in the future.

The value of the "Constraints" option must be an association from vertex names to vertex coordinates, or to bound-
ing boxes.

IGraph/M Documentation | 209

Fix the positions of three vertices and highlight them in red:
In[958]:=

IGLayoutFruchtermanReingold

IGShorthand["1:2:3:4 - 1:2:3:4:5, 5-6-7, 7:8:9 - 7:8:9"],

"Constraints" 4 {-1, 0}, 7 {1, 0}, 6 {0, 1},

VertexStyle {4 Red, 7 Red, 6 Red},

Frame True, FrameTicks True, GridLines Automatic

Out[958]=

1

2

3

4

5

6

7

8

9

-1.0 -0.5 0.0 0.5 1.0

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Drawing trees

IGLayoutReingoldTilford[] and IGLayoutReingoldTilfordCircular[] are designed for laying out trees

or forests. The following options are available:

◼"RootVertices" allows specifying the root node(s). It must be a list, even if there is a single root node. Multiple root
nodes are meant to be used with forests. The roots should be selected so that all vertices of the graph are reachable

from them. "RootVertices" Automatic chooses roots automatically, preferring low eccentricity vertices in

small graphs (fewer than 500 vertices) and high degree vertices in large graphs.

◼DirectedEdges False ignores edge directions. By default, directed graphs are laid out so that edges are

pointing away from the root.

◼"Rotation" controls the orientation of the layout. It must be given in radians.

The following options are unique to IGLayoutReingoldTilford[]:

◼"LeafDistance" sets the spacing between tree leaves. The default is 1.

◼"LayerHeight" sets the spacing between layers of the drawing. The default is 1.

The same tree laid out in directed and undirected modes:
In[959]:=

t = IGTreeGame12, DirectedEdges True;

IGLayoutReingoldTilford[t],

IGLayoutReingoldTilfordt, DirectedEdges False

Out[960]=

 ,

210 | IGraph/M Documentation

Lay out the tree radially, with successive layers places on circular shells:
In[961]:=

IGLayoutReingoldTilfordCirculart,

GraphStyle "Minimal",

Prolog Thin, Gray, TableCircle[{0, 0}, r], r, IGDiameter[t, "ByComponents" True]
Out[961]=

Use a left-to-right layout, with tightly spaced leaves:
In[962]:=

IGLayoutReingoldTilfordt, "Rotation" Pi 2, "LeafDistance" 1 / 3

Out[962]=

In an undirected tree, any vertex may be chosen as the root:
In[963]:=

t = IGTreeGame[6];

Table

IGLayoutReingoldTilfordt, "RootVertices" {r}, GraphStyle "DiagramGold",

r, VertexList[t]

Out[964]=

1

2

3 4

5 6

, 1

2

3

4

5

6 ,

1

2

3

4

5

6

,

1 2

3

4

5

6

, 1

2

3

4

5

6

, 1 2

3

4

5

6

Drawing bipartite graphs
In[965]:=

? IGLayoutBipartite

IGLayoutBipartite[graph, options] lays out a bipartite graph, minimizing the number
of edge crossings. Partitions can be specified manually using the "BipartitePartitions" option.

IGLayoutBipartite draws a bipartite graph, attempting to minimize the number of edge crossing using the

Sugiyama algorithm.

IGraph/M Documentation | 211

The available options are:

◼"Orientation" can be Horizontal or Vertical

◼"PartitionGap" controls the size of the gap between the two partitions

◼"VertexGap" controls the minimum size of the gap between vertices in a partition

◼MaxIterations controls the maximum number of iterations performed during edge crossing minimization.

◼"BipartitePartitions" can be used to explicitly specify the partitioning of the graph.
In[966]:=

IGLayoutBipartiteIGBipartiteGameGNP[10, 10, 0.2], VertexLabels "Name"
Out[966]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

By default, a partitioning is computed automatically.
In[967]:=

g = Graph[{1 2, 3 4}, VertexLabels "Name"];

IGLayoutBipartite[g]
Out[968]=

1 2

3 4

The partitioning can also be specified explicitly.
In[969]:=

IGLayoutBipartiteg, "BipartitePartitions" {{2, 3}, {4, 1}}
Out[969]=

12

3 4

212 | IGraph/M Documentation

Draw a bipartite layout with curved edges.
In[970]:=

snake[{x1_, y1_}, {x2_, y2_}] := BezierCurve{x1, y1},
x1 + x2

2
, y1,

x1 + x2

2
, y2, {x2, y2}

IGLayoutBipartite@IGBipartiteGameGNM10, 10, 20,

EdgeShapeFunction CapForm["Round"], snakeFirst[#1], Last[#1] &,

GraphStyle "ThickEdge", VertexStyle Black
Out[971]=

Drawing large graphs

IGLayoutDrL is designed specifically for visualizing large graphs with high clustering. The following image is created

using DrL and shows a 36000 node network of collaborations between condensed matter scientists.

IGraph/M Documentation | 213

The image was generated using the following code:

lg = ExampleData"NetworkGraph", "CondensedMatterCollaborations2005";

lg = IndexGraph@Subgraphlg, First@ConnectedComponents[lg];

c = IGCommunitiesMultilevel[lg]

pts = GraphEmbedding@IGLayoutDrL[lg]; (* this takes a while *)

figure = Graphics

GraphicsComplexpts,

White, AbsoluteThickness[0.3], Opacity[0.05],

LineList @@@ EdgeList[lg],

AbsolutePointSize[2], Opacity[0.7],

MapIndexed

ColorData[45]@First[#2], Point[#1] &,

c"Communities"

,

Background Black

- evaluation is disabled in the cell above to avoid running it accidentally. Running the code takes about 2-3 min-
utes on a modern computer. Copy the code to a new cell to try it.

214 | IGraph/M Documentation

Gallery

Create galleries of the various graph layouts available in IGraph/M.

IGraph/M Documentation | 215

Visualise a tree graph with all layouts.
In[972]:=

g = IGBarabasiAlbertGame32, 1, DirectedEdges False;

layouts = Graph[#[g], PlotLabel #, LabelStyle 7] & /@

IGLayoutCircle, IGLayoutSphere, IGLayoutDavidsonHarel, IGLayoutDrL, IGLayoutDrL3D,

IGLayoutFruchtermanReingold, IGLayoutFruchtermanReingold3D, IGLayoutGEM, IGLayoutGraphOpt,

IGLayoutKamadaKawai, IGLayoutKamadaKawai3D, IGLayoutRandom, IGLayoutReingoldTilford,

IGLayoutReingoldTilfordCircular, IGLayoutBipartite, IGLayoutPlanar;

Multicolumn[layouts]
Out[974]=

IGLayoutCircle
IGLayoutGraphOpt

IGLayoutReingoldTilford

IGLayoutFruchtermanReingold IGLayoutKamadaKawai

IGLayoutReingoldTilfordCircular

IGLayoutDavidsonHarel

IGLayoutBipartite

IGLayoutDrL
IGLayoutGEM

IGLayoutRandom IGLayoutPlanar

216 | IGraph/M Documentation

Visualise a polyhedral graph with all layouts.
In[975]:=

g = GraphData["DodecahedralGraph"];

layouts = Graph[#[g], PlotLabel #, LabelStyle 7] & /@

IGLayoutCircle, IGLayoutSphere, IGLayoutDavidsonHarel, IGLayoutDrL, IGLayoutDrL3D,

IGLayoutFruchtermanReingold, IGLayoutFruchtermanReingold3D, IGLayoutGEM, IGLayoutGraphOpt,

IGLayoutKamadaKawai, IGLayoutKamadaKawai3D, IGLayoutRandom, IGLayoutPlanar, IGLayoutTutte;

Multicolumn[layouts]
Out[977]=

IGLayoutCircle IGLayoutGraphOpt IGLayoutPlanar

IGLayoutFruchtermanReingold
IGLayoutKamadaKawai IGLayoutTutte

IGLayoutDavidsonHarel

IGLayoutDrL IGLayoutGEM
IGLayoutRandom

IGraph/M Documentation | 217

Community detection
The following functions are available:

In[978]:=

? IGCommunities*

IGraphM`

IGCommunitiesEdgeBetweenness IGCommunitiesLabelPropagation IGCommunitiesOptimalModularity

IGCommunitiesFluid IGCommunitiesLeadingEigenvector IGCommunitiesSpinGlass

IGCommunitiesGreedy IGCommunitiesLeiden IGCommunitiesWalktrap

IGCommunitiesInfoMAP IGCommunitiesMultilevel

Concepts

Modularity is defined for a given partitioning of a graph’s vertices into communities. For undirected graphs, it is defined as

Q =
1

2m

i,j

Aij-
ki kj

2m
δcicj ,

where m is the number of edges, A is the adjacency matrix, ki is the degree of node i, and ci is the community that node i
belongs to. δij is the Kronecker δ symbol. For weighted graphs, A is the weighted adjacency matrix, ki are the sum of

weights of edges incident on node i, and m is the sum of all weights.

Modularity characterizes the tendency of vertices to connect more within their own group than with other groups, relative

to a null model that considers vertex degrees to be fixed. For a given partitioning, it can be computed using

IGModularity. Most community detection methods aim find a partitioning of the graph which results in high

modularity.

Basic usage and utility functions

Community detection functions return IGClusterData objects.
In[979]:=

g = ExampleData"NetworkGraph", "FamilyGathering"

Out[979]=

Elisabeth

James

Anna

John
Dorothy

Linda

Michael

Larry

Carol

Nancy

David

Nora

Julia

Ben

Oscar

Felicia

Arlene

Rudy

In[980]:=

cl = IGCommunitiesGreedy[g]
Out[980]=

IGClusterData Elements: 18
Communities: 4

The data available in the object can be queried using IGClusterData[…]["Properties"]. See the Examples

218 | IGraph/M Documentation

section below for more information. In Mathematica 12.0 and later, Information can be used to get a quick human-
readable summary.

In[981]:=

cl"Properties"
Out[981]=

{Algorithm, Communities, ElementCount, Elements,

HierarchicalClusters, Merges, Modularity, Properties, Tree}

In[982]:=

cl"Communities"

Out[982]=

{{Elisabeth, James, Anna, Nancy}, {John, Dorothy, David, Arlene, Rudy},

{Linda, Michael, Nora, Julia}, {Larry, Carol, Ben, Oscar, Felicia}}

In[983]:=

CommunityGraphPlotg, cl"Communities", ImageSize Medium

Out[983]=

Elisabeth

JamesAnna

John

Dorothy

Linda Michael

Larry

Carol

Nancy
David

Nora

Julia

Ben

Oscar

Felicia

Arlene

Rudy

In[984]:=

IGModularity[g, cl]
Out[984]=

0.454735

IGClusterData
In[985]:=

? IGClusterData

IGClusterData[association] represents the output of community
detection functions. Properties can be queried using IGClusterData[…]["property"].

IGClusterData represents a partitioning of a graph into communities. This object cannot be created directly. It is

returned by community detection functions. See the Examples section below for more information.
In[986]:=

cl = IGCommunitiesLabelPropagation@ExampleData"NetworkGraph", "FamilyGathering"
Out[986]=

IGClusterData Elements: 18
Communities: 3

IGraph/M Documentation | 219

Query the available properties.
In[987]:=

cl"Properties"

Out[987]=

{Algorithm, Communities, ElementCount, Elements, Modularity, Properties}

Retrieve the communities.
In[988]:=

cl"Communities"
Out[988]=

{{Elisabeth, James, Anna, Linda, Larry, Carol, Nancy, David, Ben, Oscar, Felicia, Arlene, Rudy},

{John, Dorothy}, {Michael, Nora, Julia}}

When the "Modularity" property is available, Max[cl["Modularity"]] gives the modularity of the current
partitioning.

In[989]:=

Maxcl"Modularity"

Out[989]=

0.188866

IGModularity
In[990]:=

? IGModularity

IGModularity[graph, {{v11, v12,…}, {v21, v22,…},…}] gives the modularity
the specified partitioning of graph's vertices into communities. Edge directions are ignored.

IGModularity[graph, clusterdata] uses the partitioning specified by an IGClusterData object.

IGModularity computes the generalized modularity in undirected or directed graphs, taking weights into account. For
undirected graphs, it is defined as

Q =
1

2m

i,j

Aij-γ
ki kj

2m
δcicj ,

where m is the number of edges, A is the adjacency matrix, ki is the degree of node i, and ci is the community that node i
belongs to. δij is the Kronecker δ symbol. For weighted graphs, A is the weighted adjacency matrix, ki are the sum of

weights of edges incident on node i, and m is the sum of all weights. In the undirected case, Aii is assumed to contain twice

the number of self-loops on vertex i, or twice their total weight in the weighted case. γ is a resolution parameter, with

γ = 1 yielding the standard modularity.

The directed generalization is

Q =
1

m

i,j

Aij-γ
ki
out kj

in

m
δcicj .

For simple graphs, IGModularity[graph, communities] is equivalent to

GraphAssortativity[graph, communities, "Normalized" False]. However, in contrast to

GraphAssortativity, IGModularity does take self-loops and multi-edges into account.

Available options are:

◼"Resolution" γ sets the resolution parameter. The default is 1.

◼DirectedEdges True takes into account edge directions in directed graphs. By default, they are ignored.

220 | IGraph/M Documentation

Compute the modularity of a stochastic block model graph having three partitions, each with 20 vertices.
In[991]:=

g = IGStochasticBlockModelGame
0.1 0.01 0.015
0.01 0.15 0.01
0.015 0.01 0.2

, {20, 20, 20};

In[992]:=

IGModularityg, PartitionVertexList[g], 20

Out[992]=

0.456154

Setting the resolution parameter to zero computes the fraction of intra-community edges.
In[993]:=

IGModularityg, PartitionVertexList[g], 20, "Resolution" 0

Out[993]=

0.8125

IGModularityMatrix
In[994]:=

? IGModularityMatrix

IGModularityMatrix[graph] gives the modularity matrix of graph.

IGModularityMatrix computes the generalized modularity matrix of a graph, defined as

Bij = Aij-γ
ki kj

2m

for undirected graphs and as

Bij = Aij-γ
ki
out kj

in

m

for directed ones. Here, A represents the adjacency matrix, ki is the degree of vertex i, m is the sum of edge weights and γ

is the resolution parameter. Just as with IGModularity, in undirected graphs Aii is assumed to contain twice the

number of self-loops. This way, the result for an undirected graph is the same as for the corresponding directed one

where all undirected edges are replaced by a pair of reciprocal directed ones.

Available options are:

◼"Resolution" γ sets the resolution parameter. The default is 1.

◼DirectedEdges True takes into account edge directions in directed graphs. By default, they are ignored.

IGraph/M Documentation | 221

The modularity matrix is used in spectral clustering algorithms, such as the one implemented by

IGCommunitiesLeadingEigenvector. Communities can be separated based on spatial clustering of the points

formed by the first few eigenvectors of the modularity matrix.
In[995]:=

g = IGStochasticBlockModelGame0.05 + 0.5 IdentityMatrix[3], {10, 10, 10}

Out[995]=

In[996]:=

ListPlotFindClusters@Transpose@EigenvectorsIGModularityMatrix[g], 2,

PlotStyle PointSize[Large], AspectRatio Automatic

Out[996]=

-0.3 -0.2 -0.1 0.1 0.2

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

222 | IGraph/M Documentation

IGCompareCommunities
In[997]:=

? IGCompareCommunities

IGCompareCommunities[clusterdata1, clusterdata2] compares two community structures given
as IGClusterData objects using all available methods. Available methods: {"VariationOfInformation",
"NormalizedMutualInformation", "SplitJoinDistance", "UnadjustedRandIndex", "AdjustedRandIndex"}.

IGCompareCommunities[clusterdata1, clusterdata2, method] compares two community structures using method.
IGCompareCommunities[clusterdata1, clusterdata2,

{method1,…}] compares two community structures using each given method.
IGCompareCommunities[graph, communities1, communities2] compares

two partitionings of the graph vertices into communities using all available methods.
IGCompareCommunities[graph, communities1, communities2, method] compares two community structures using method.
IGCompareCommunities[graph, communities1, communities2,

{method1,…}] compares two community structures using each given method.
IGCompareCommunities[vertexList, communities1, communities2] uses the given vertex list.

Some of these measures are defined based on the entropy of a discrete random variable associated with a given cluster-
ing C of vertices. Let pi be the probability that a randomly picked vertex would be part of cluster i. Then the entropy of the

clustering is

H(C) = -
i
pi ln pi.

Similarly, we can define the joint entropy of two clusterings C1 and C2 based on the probability pij that a random vertex is

part of cluster i in the first clustering and cluster j in the second one:

H(C1, C2) = -
i,j
pij ln pij.

The mutual information of C1 and C2 is then MI(C1, C2) = H(C1) + H(C2) - H(C1, C2) ≥ 0. A large mutual information indicates

a high overlap between the two clusterings. The normalized mutual information, as computed by igraph, is

NMI(C1, C2) =
2MI(C1, C2)

H(C1)+H(C2)
.

It takes its value from the interval (0, 1], with 1 achieved when the two clusterings coincide.

The variation of information is defined as VI(C1, C2) = [H(C1) -MI(C1, C2)] + [H(C2) -MI(C1, C2)] = 2H(C1, C2) - H(C1) - H(C2).
Lower values of the variation of information indicate a smaller difference between the two clusterings, with VI = 0

achieved precisely when they coincide.

The Rand index is defined based on counting pairs of vertices that are within the same or different clusters in the two

clusterings. Let a1 and a2 denote the number of pairs that are grouped together in C1 and C2, respectively. Then the Rand

index is

RI(C1, C2) =
a1+a2

n
2

,

where
n
2

 is the total number of pairs of n vertices. The value of the Rand index varies between 0 and 1. The adjusted

Rand index, ARI, corrects the value based on the Rand index expected after after a random rearrangement of the vertices,
denoted ERI:

ARI =
RI-ERI

1-ERI
.

IGraph/M Documentation | 223

In[998]:=

g = ExampleData"NetworkGraph", "FamilyGathering";

In[999]:=

{cl1, cl2} = IGCommunitiesGreedy[g], IGCommunitiesEdgeBetweenness[g]
Out[999]=

IGClusterData Elements: 18
Communities: 4

, IGClusterData Elements: 18
Communities: 4

In[1000]:=

IGCompareCommunities[cl1, cl2]
Out[1000]=

VariationOfInformation 0.278001, NormalizedMutualInformation 0.899283,

SplitJoinDistance 2, UnadjustedRandIndex 0.947712, AdjustedRandIndex 0.841942

Community detection methods

IGCommunitiesEdgeBetweenness
In[1001]:=

? IGCommunitiesEdgeBetweenness

IGCommunitiesEdgeBetweenness[graph] finds communities using the Girvan–Newman algorithm.

IGCommunitiesEdgeBetweenness[] implements the Girvan–Newman algorithm.

Weighted graphs are supported. Weights are treated as “distances”, i.e. a large weight represents a weak connection.

Available option values:

◼"ClusterCount", the number of communities to return. Default: Automatic.

Special properties returned with the result:

◼"RemovedEdges" is the list of edges removed in each step of the algorithm.

◼"Bridges" records the steps which resulted in splitting the graph into more components.

References

◼M. Girvan and M. E. J. Newman: Community structure in social and biological networks, PNAS 99, 7821-7826 (2002).

IGCommunitiesFluid
In[1002]:=

? IGCommunitiesFluid

IGCommunitiesFluid[graph, clusterCount] finds communities using the fluid communities algorithm.

IGCommunitiesFluid[] implements the fluid communities algorithm.

Reference

◼ F. Parés, D. Garcia-Gasulla, A. Vilalta, J. Moreno, E. Ayguadé, Jesús Labarta, U. Cortés, T. Suzumura: Fluid Communities:
A Competitive, Scalable and Diverse Community Detection Algorithm, https://arxiv.org/abs/1703.09307

224 | IGraph/M Documentation

https://arxiv.org/abs/1703.09307

IGCommunitiesGreedy
In[1003]:=

? IGCommunitiesGreedy

IGCommunitiesGreedy[graph] finds communities using greedy optimization of modularity.

IGCommunitiesGreedy[] implements greedy optimization of modularity.

Weighted graphs are supported.

Reference

◼ A. Clauset, M. E. J. Newman, C. Moore: Finding community structure in very large networks,
http://www.arxiv.org/abs/cond-mat/0408187

IGCommunitiesInfoMAP
In[1004]:=

? IGCommunitiesInfoMAP

IGCommunitiesInfoMAP[graph] finds communities using the InfoMAP algorithm. The default number of trials is 10.
IGCommunitiesInfoMAP[graph, trials]

IGCommunitiesInfoMAP[] implements the InfoMAP algorithm.

It supports both edge weights and vertex weights.

The default number of trials is 10.

Special properties returned with the result:

◼"CodeLength" is the code length of the partition.

References

◼M. Rosvall and C. T. Bergstrom, Maps of information flow reveal community structure in complex networks, PNAS 105,
1118 (2008)

◼M. Rosvall, D. Axelsson, and C. T. Bergstrom, The map equation, Eur. Phys. J. Special Topics 178, 13 (2009)

IGCommunitiesLabelPropagation
In[1005]:=

? IGCommunitiesLabelPropagation

IGCommunitiesLabelPropagation[graph] finds communities by assigning labels
to each vertex and then updating them bymajority voting in the neighbourhood of the vertex.

Weighted graphs are supported.

References

◼ Raghavan, U.N. and Albert, R. and Kumara, S.: Near linear time algorithm to detect community structures in large-scale

networks. Phys. Rev. E 76, 036106. (2007).

IGraph/M Documentation | 225

http://www.arxiv.org/abs/cond-mat/0408187

IGCommunitiesLeadingEigenvector
In[1006]:=

? IGCommunitiesLeadingEigenvector

IGCommunitiesLeadingEigenvector[graph] finds communities based on the leading eigenvector of the modularity matrix.

Weighted graphs are supported.

Available option values:

◼"ClusterCount", the number of communities to return. May return fewer communities than requested. Default:
Automatic.

References

◼M. E. J. Newman: Finding community structure using the eigenvectors of matrices, Phys. Rev. E 74:036104 (2006).

IGCommunitiesMultilevel
In[1007]:=

? IGCommunitiesMultilevel

IGCommunitiesMultilevel[graph] finds communities using the Louvain method.

IGCommunitiesMultilevel[] implements the Louvain community detection method.

Weighted graphs are supported.

References

◼ V. D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre: Fast unfolding of community hierarchies in large networks,
J. Stat. Mech. P10008 (2008)

IGCommunitiesLeiden
In[1008]:=

? IGCommunitiesLeiden

IGCommunitiesLeiden[graph] finds communities using the Leiden method.

The Leiden algorithm is similar to the multilevel algorithm, often called the Louvain algorithm, but it is faster and yields

higher quality solutions. It can optimize both modularity and the Constant Potts Model, which does not suffer from the

resolution-limit (see preprint http://arxiv.org/abs/1104.3083).

The Leiden algorithm consists of three phases: (1) local moving of nodes, (2) refinement of the partition and (3) aggrega-
tion of the network based on the refined partition, using the non-refined partition to create an initial partition for the

aggregate network. In the local move procedure in the Leiden algorithm, only nodes whose neighborhood has changed

are visited. The refinement is done by restarting from a singleton partition within each cluster and gradually merging the

subclusters. When aggregating, a single cluster may then be represented by several nodes (which are the subclusters

identified in the refinement).

The Leiden algorithm provides several guarantees. The Leiden algorithm is typically iterated: the output of one iteration is

used as the input for the next iteration. At each iteration all clusters are guaranteed to be connected and well-separated.
After an iteration in which nothing has changed, all nodes and some parts are guaranteed to be locally optimally

assigned. Finally, asymptotically, all subsets of all clusters are guaranteed to be locally optimally assigned.

The Leiden method maximizes a quality measure (a generalization of modularity) defined as

226 | IGraph/M Documentation

http://arxiv.org/abs/1104.3083

Q =
1

2m

i,j
Aij-γ ni nj δcicj

where m is the sum of edge weights (number of edges if the graph is unweighted), A is the weighted adjacency matrix, ni is

the weight of vertex i, and ci is the community that vertex i belongs to. δij is the Kronecker δ symbol.

γ is a resolution parameter that can be set with the "Resolution" option.

The function chooses the vertex weights automatically, according to the value of the VertexWeight option:

◼VertexWeight "NormalizedStrength" (default) sets ni = ki 2m , where ki is the strength (sum of incident

edge weights) of vertex i. If γ = 1, then the quality measure becomes equivalent to the modularity.

◼VertexWeight "Constant" sets ni = 1. With this choice, it is recommended to set the resolution parameter γ
explicitly. A reasonable γ value for unweighted graphs is the graph density.

◼VertexWeight "VertexWeight" takes vertex weights from the VertexWeight graph property.

Other available options:

◼"Resolution" γ sets the resolution parameter γ. The default is γ = 1. With

VertexWeight "NormalizedStrength", a reasonable value is 1. With VertexWeight "Constant", a

reasonable value is the graph density.

◼"Beta" β sets the randomness used in the refinement step when merging clusters. The default is β = 0.01.

Special properties returned with the result :

◼"Quality" is the value of the quality measure Q.

Examples:
In[1009]:=

g =

GraphExampleData"NetworkGraph", "LesMiserables", GraphStyle "BasicBlack", VertexSize 2;

With the default option values VertexWeight "NormalizedStrength" and "Resolution" 1,

IGCommunitiesLeiden effectively uses the modularity as the quality measure.
In[1010]:=

cl = IGCommunitiesLeiden[g]
Out[1010]=

IGClusterData Elements: 77
Communities: 6

In[1011]:=

cl"Quality", IGModularity[g, cl]
Out[1011]=

{0.566688, 0.566688}

In[1012]:=

HighlightGraphg, cl"Communities"
Out[1012]=

IGraph/M Documentation | 227

A higher "Resolution" value results in more communities.
In[1013]:=

HighlightGraph

g,

IGCommunitiesLeideng, "Resolution" 3"Communities"

Out[1013]=

With VertexWeight "Constant", it is recommended to set "Resolution" explicitly. A reasonable starting point

is GraphDensity[g].

In[1014]:=

HighlightGraph

g,

IGCommunitiesLeideng, VertexWeight "Constant", "Resolution" 0.1"Communities"

Out[1014]=

References

◼ Traag, V. A., Waltman, L., van Eck, N. J. (2019). From Louvain to Leiden: guaranteeing well-connected communities.
Scientific Reports, 9(1), 5233. http://dx.doi.org/10.1038/s41598-019-41695-z

IGCommunitiesOptimalModularity
In[1015]:=

? IGCommunitiesOptimalModularity

IGCommunitiesOptimalModularity[graph] finds communities by maximizing the modularity through integer programming.

Finds the clustering that maximizes modularity exactly. This algorithm is very slow.

Weighted graphs are supported.

228 | IGraph/M Documentation

http://dx.doi.org/10.1038/s41598-019-41695-z

IGCommunitiesSpinGlass
In[1016]:=

? IGCommunitiesSpinGlass

IGCommunitiesSpinGlass[graph] finds communities using a spin glass model and simulated annealing. Available
"UpdateRule" option values: {"Simple", "Configuration"}. Available Method options: {"Original", "Negative"}.

Weighted graphs are supported.

Option values for Method are:

◼"Original" only supports positive edge weights, but doesn’t check that the supplied weights are actually positive.

◼"Negative" supports negative weights as well.

◼Automatic selects "Negative" if negative weights are presents and "Original" otherwise.

Option values for "UpdateRule" are: "Simple", "Configuration"

Special properties returned with the result:

◼"FinalTemperature" is the final temperature at the end of the algorithm.

References

◼ For Method "Original, see Joerg Reichardt and Stefan Bornholdt: Statistical Mechanics of Community

Detection, http://arxiv.org/abs/cond-mat/0603718

◼ For Method "Negative", see V. A. Traag and Jeroen Bruggeman: Community detection in networks with positive

and negative links, http://arxiv.org/abs/0811.2329

IGCommunitiesWalktrap
In[1017]:=

? IGCommunitiesWalktrap

IGCommunitiesWalktrap[graph] finds communities via short random walks (of length 4 by default).
IGCommunitiesWalktrap[graph, steps] finds communities via random walks of length steps.

IGCommunitiesWalktrap[] finds communities using short random walks, exploiting the fact that random walks

tend to stay within the same cluster.

Weighted graphs are supported.

The default number of steps is 4.

Available option values:

◼"ClusterCount", the number of communities to return. Default: Automatic.

References

◼ Pascal Pons, Matthieu Latapy: Computing communities in large networks using random walks,
http://arxiv.org/abs/physics/0512106

IGraph/M Documentation | 229

http://arxiv.org/abs/cond-mat/0603718
http://arxiv.org/abs/0811.2329
http://arxiv.org/abs/physics/0512106

Examples
In[1018]:=

g = ExampleData"NetworkGraph", "LesMiserables"
Out[1018]=

In[1019]:=

IGEdgeWeightedQ[g]
Out[1019]=

True

Community detection functions return IGClusterData objects.
In[1020]:=

cl1 = IGCommunitiesEdgeBetweenness[g, "ClusterCount" 7]

cl2 = IGCommunitiesWalktrap[g]
Out[1020]=

IGClusterData Elements: 77
Communities: 7

Out[1021]=

IGClusterData Elements: 77
Communities: 9

Various properties of these objects can be queried:
In[1022]:=

cl1"Communities"

Out[1022]=

{Myriel, Napoleon, Mlle Baptistine, Mme. Magloire,

Countess De Lo, Geborand, Champtercier, Cravatte, Count, Old Man},

Labarre, Valjean, Marguerite, Mme. De R, Isabeau, Gervais, Bamatabois, Perpetue,

Simplice, Scaufflaire, Woman1, Judge, Champmathieu, Brevet, Chenildieu, Cochepaille,

{Tholomyes, Listolier, Fameuil, Blacheville, Favourite, Dahlia, Zephine, Fantine},

{Mme. Thenardier, Thenardier, Cosette, Javert, Boulatruelle, Eponine,

Anzelma, Woman2, Gueulemer, Babet, Claquesous, Montparnasse, Toussaint, Brujon},

{Fauchelevent, Mother Innocent, Gribier}, {Pontmercy, Gillenormand, Magnon,

Mlle Gillenormand, Mme. Pontmercy, Mlle Vaubois, Lt. Gillenormand, Marius, Baroness T},

Jondrette, Mme. Burgon, Gavroche, Mabeuf, Enjolras, Combeferre, Prouvaire, Feuilly,

Courfeyrac, Bahorel, Bossuet, Joly, Grantaire, Mother Plutarch, Child1, Child2, Mme. Hucheloup

230 | IGraph/M Documentation

Visualize the detected communities in two different ways:
In[1023]:=

CommunityGraphPlotg, cl1"Communities"

Out[1023]=

In[1024]:=

HighlightGraphg, Subgraph[g, #] & /@ cl1"Communities", GraphHighlightStyle "DehighlightGray"
Out[1024]=

Plot the adjacency matrix, reordered to show the community structure.
In[1025]:=

IGAdjacencyMatrixPlotg, Catenate@cl1"Communities"

Out[1025]=

20 40 60

20

40

60

20 40 60

20

40

60

The available properties depend on which algorithm was used for community detection. The following are always present:

◼"Properties" returns all available properties.

◼"Algorithm" returns the algorithm used for community detection.

◼"Communities" returns the list of communities.

◼"Elements" returns the vertices of the graph.

◼"ElementCount" returns the vertex count of the graph.

IGraph/M Documentation | 231

These are present for hierarchical clustering methods:

◼"HierarchicalClusters" returns the clustering in a format compatible with the Hierarchical Clustering standard

package. Note: Isolated vertices may not be included.

◼"Merges" represents the hierarchical clustering as a sequence of element merges. Elements are represented by their
integer indices, and higher indices are introduced for the subclusters formed by the merges. This format is similar to

the one used by MATLAB and many other tools. Note: Isolated vertices may not be included.

◼"Tree" gives a binary tree representation of the merges. Note: Isolated vertices may not be included.

Additionally, the following, and other, algorithm-specific properties may be present:

◼"Modularity" is a list of modularities for each step of the algorithm, or a single-element list containing the

modularity corresponding to the returned clustering. What constitutes a step depends on the particular algorithm.

The "RemovedEdges" property is specific to the "EdgeBetweenness" method, and isn’t present for "Walktrap".

In[1026]:=

cl1"Properties"

Out[1026]=

{Algorithm, Bridges, Communities, EdgeBetweenness, ElementCount,

Elements, HierarchicalClusters, Merges, Properties, RemovedEdges, Tree}

In[1027]:=

Take[cl1["RemovedEdges"], 10]
Out[1027]=

{Valjean Myriel, Valjean Mlle Baptistine, Valjean Mme. Magloire,

Gavroche Valjean, Gavroche Javert, Thenardier Fantine, Bamatabois Javert,

Bossuet Valjean, Montparnasse Valjean, Gueulemer Gavroche}

In[1028]:=

cl2"Properties"

Out[1028]=

{Algorithm, Communities, ElementCount, Elements,

HierarchicalClusters, Merges, Modularity, Properties, Tree}

Multiple properties may be retrieved at the same time.
In[1029]:=

cl2"Algorithm", "ElementCount"

Out[1029]=

{Walktrap, 77}

Compare the two clusterings:
In[1030]:=

IGCompareCommunities[cl1, cl2]
Out[1030]=

VariationOfInformation 0.804544, NormalizedMutualInformation 0.786844,

SplitJoinDistance 29, UnadjustedRandIndex 0.879699, AdjustedRandIndex 0.555464

Visualize the hierarchical clustering using the Hierarchical Clustering Package.
In[1031]:=

<< HierarchicalClustering`

232 | IGraph/M Documentation

http://matlink.org/

In[1032]:=

DendrogramPlotcl1"HierarchicalClusters",

LeafLabels Rotate#, Pi 2 &, ImageSize 750, AspectRatio 1 / 2

Out[1032]=

M
yr
ie
l

M
lle
B
ap
tis
tin
e

M
m
e.
M
ag
lo
ire

O
ld
M
an

C
ou
nt

C
ra
va
tte

C
ha
m
pt
er
ci
er

G
eb
or
an
d

C
ou
nt
es
s
D
e
Lo

N
ap
ol
eo
n

La
ba
rr
e

B
am
at
ab
oi
s

Ju
dg
e

C
ha
m
pm
at
hi
eu

B
re
ve
t

C
he
ni
ld
ie
u

V
al
je
an

C
oc
he
pa
ill
e

W
om
an
1

S
ca
uf
fla
ire

G
er
va
is

Is
ab
ea
u

M
m
e.
D
e
R

M
ar
gu
er
ite

P
er
pe
tu
e

S
im
pl
ic
e

F
au
ch
el
ev
en
t

G
rib
ie
r

M
ot
he
r
In
no
ce
nt

T
ho
lo
m
ye
s

Li
st
ol
ie
r

F
am
eu
il

B
la
ch
ev
ill
e

F
av
ou
rit
e

D
ah
lia

Z
ep
hi
ne

F
an
tin
e

M
m
e.
T
he
na
rd
ie
r

Ja
ve
rt

G
ue
ul
em
er

T
he
na
rd
ie
r

B
ab
et

C
la
qu
es
ou
s

B
ru
jo
n

M
on
tp
ar
na
ss
e

E
po
ni
ne

A
nz
el
m
a

B
ou
la
tr
ue
lle

C
os
et
te

To
us
sa
in
t

W
om
an
2

G
ill
en
or
m
an
d

B
ar
on
es
s
T

Lt
.G
ill
en
or
m
an
d

M
ar
iu
s

M
ag
no
n

M
lle
G
ill
en
or
m
an
d

M
lle
V
au
bo
is

P
on
tm
er
cy

M
m
e.
P
on
tm
er
cy

Jo
nd
re
tte

M
m
e.
B
ur
go
n

G
av
ro
ch
e

C
hi
ld
1

C
hi
ld
2

M
ab
eu
f

E
nj
ol
ra
s

F
eu
ill
y

B
os
su
et

C
om
be
fe
rr
e

Jo
ly

B
ah
or
el

C
ou
rf
ey
ra
c

M
m
e.
H
uc
he
lo
up

P
ro
uv
ai
re

G
ra
nt
ai
re

M
ot
he
r
P
lu
ta
rc
h

Hierarchical community structures can also be obtained as a vertex-weighted tree graph.
In[1033]:=

g = ExampleData[{"NetworkGraph", "ZacharyKarateClub"}];

In[1034]:=

cl = IGCommunitiesGreedy[g];

In[1035]:=

clusteringTree = cl["Tree"]
Out[1035]=

17 6

7

30 27

34

24

28

1

5

11

26 25

3213 4

2 18

31 9

33

3 10

2212

8

14

29

16

15

21

19

23

20

In[1036]:=

GraphQclusteringTree, IGVertexWeightedQclusteringTree

Out[1036]=

{True, True}

IGraph/M Documentation | 233

This tree can be supplied as input to Dendrogram.

In[1037]:=

DendrogramclusteringTree, Left

Out[1037]=

20
11
5
1
17
6
7
12
2
18
22
14
3
10
13
4
8
23
19
28
24
34
30
27
32
26
25
29
33
31
9
16
15
21

Graph cycles

Eulerian paths and cycles

An Eulerian path passes through each edge of a graph precisely once. An Eulerian cycle is a closed Eulerian path: its

starting vertex is the same as its ending vertex. Eulerian paths are also known as Eulerian trails.

Note: As of IGraph/M 0.5, the Eulerian path functions are still experimental.

IGEulerianQ
In[1038]:=

? IGEulerianQ

IGEulerianQ[graph] tests if graph has a path that traverses each edge once (Eulerian path).
IGEulerianQ[graph, Closed -> True] tests if graph has a cycle that traverses each edge once.

234 | IGraph/M Documentation

The following graph does not have an Eulerian path:
In[1039]:=

graph = ;

In[1040]:=

IGEulerianQ[graph]
Out[1040]=

False

Removing the edge A D makes it Eulerian:
In[1041]:=

IGEulerianQ@EdgeDelete[graph, "A" "D"]
Out[1041]=

True

But it will only have an Eulerian path, not an Eulerian cycle:
In[1042]:=

IGEulerianQ[

EdgeDelete[graph, "A" "D"],

Closed True

]

Out[1042]=

False

One possible path is the following:
In[1043]:=

IGEulerianPathVertices[EdgeDelete[graph, "A" "D"]]
Out[1043]=

{B, A, B, D, C, A, C}

IGEulerianPath and IGEulerianPathVertices
In[1044]:=

? IGEulerianPath

IGEulerianPath[graph] returns the edges of an Eulerian path, if it exists.
IGEulerianPath[graph, Closed -> True] returns an Eulerian cycle.

In[1045]:=

? IGEulerianPathVertices

IGEulerianPathVertices [graph] returns the vertices of an Eulerian path, if it exists.
IGEulerianPathVertices [graph, Closed -> True] returns the vertices of an Eulerian cycle.

IGraph/M Documentation | 235

Find an Eulerian cycle through an icosidodecahedral graph:
In[1046]:=

g = GraphData"IcosidodecahedralGraph";

cycle = IGEulerianPath[g, Closed True]
Out[1047]=

{1 5, 5 7, 7 8, 6 8, 2 6, 2 16, 6 16, 6 30, 8 30, 8 14, 7 14,

7 29, 5 29, 5 15, 1 15, 1 18, 18 20, 11 20, 11 12, 3 12, 3 9,

9 15, 15 22, 9 22, 9 17, 3 17, 3 27, 12 27, 12 13, 4 13, 4 10,

10 16, 16 23, 14 23, 14 22, 22 23, 10 23, 10 17, 4 17, 4 28, 2 28,

2 19, 19 21, 11 21, 11 13, 13 28, 19 28, 19 26, 21 26, 20 21,

20 25, 24 25, 24 26, 26 30, 24 30, 24 29, 25 29, 18 25, 18 27, 1 27}

Visualize it using colour hues:
In[1048]:=

HighlightGraphg,

MapIndexedStyle#1, HueFirst[#2] Length[cycle] &, cycle,

GraphStyle "ThickEdge"

Out[1048]=

236 | IGraph/M Documentation

Direct the edges of the graph along the cycle:
In[1049]:=

Graph

VertexList[g],

DirectedEdge @@@ PartitionIGEulerianPathVertices[g, Closed True], 2, 1,

EdgeStyle ArrowheadsMedium,

VertexCoordinates GraphEmbedding[g]

Out[1049]=

Graph colouring
The graph colouring problem is assigning “colours” or “labels” to the vertices of a graph so that no two adjacent vertices

will have the same colour. Similarly, edge colouring assigns colours to edges so that adjacent edges never have the same

colour.

IGraph/M represents colours with the integers 1, 2, …. Edge directions and self-loops are ignored.

Fast heuristic colouring
In[1050]:=

? IGVertexColoring

IGVertexColoring[graph] gives a vertex colouring of graph.

In[1051]:=

? IGEdgeColoring

IGEdgeColoring[graph] gives an edge colouring of graph.

These function will find a colouring of the graph using a fast heuristic algorithm. The colouring may not be minimal. Edge

directions are ignored.

IGraph/M Documentation | 237

Compute a vertex colouring of a Mycielski graph.
In[1052]:=

g = GraphData"Mycielski", 4

Out[1052]=

IGVertexColoring returns a list of integers, each representing the colour of the vertex that is in the same position in

the vertex list.
In[1053]:=

IGVertexColoring[g]
Out[1053]=

{4, 3, 1, 1, 3, 1, 2, 2, 2, 2, 2}

Associate the colours with vertex names.
In[1054]:=

AssociationThreadVertexList[g], IGVertexColoring[g]

Out[1054]=

1 4, 2 3, 3 1, 4 1, 5 3, 6 1, 7 2, 8 2, 9 2, 10 2, 11 2

Visualize the colours using IGraph/M’s property mapping functionality. See the Property handling functions documenta-
tion section for more information.

In[1055]:=

Graphg, VertexSize 1 / 3, EdgeStyle Gray //

IGVertexMapColorData[97], VertexStyle IGVertexColoring

Out[1055]=

238 | IGraph/M Documentation

Visualize an edge colouring of the same graph.
In[1056]:=

Graphg, GraphStyle "ThickEdge", EdgeStyle Opacity[0.7], VertexStyle Black //

IGEdgeMapColorData[106], EdgeStyle IGEdgeColoring

Out[1056]=

Compute a checkerboard-like colouring of a three-dimensional grid graph.
In[1057]:=

IGVertexMapColorData[97], VertexStyle IGVertexColoring,

Graph3D@GridGraph{4, 4, 4}, VertexSize 0.8
Out[1057]=

IGraph/M Documentation | 239

Compute a colouring of a Voronoi mesh.
In[1058]:=

mesh = VoronoiMesh[RandomReal[1, {20, 2}]]
Out[1058]=

In[1059]:=

col = IGVertexColoring@IGMeshCellAdjacencyGraph[mesh, 2]
Out[1059]=

{2, 5, 4, 2, 1, 1, 2, 2, 4, 1, 3, 1, 2, 3, 3, 4, 2, 1, 3, 1}

In[1060]:=

SetProperty[{mesh, {2, All}}, MeshCellStyle ColorData[97] /@ col]
Out[1060]=

Compute a colouring of the map of African countries.
In[1061]:=

countries = CountryData"Africa";

borderingQ[c1_, c2_] := MemberQc1"BorderingCountries", c2

graph = RelationGraphborderingQ, countries;

240 | IGraph/M Documentation

In[1064]:=

GeoGraphics@MapThreadGeoStylingOpacity[0.5], #2, Polygon[#1] &,

countries, ColorData[97] /@ IGVertexColoring[graph]

Out[1064]=

k-colouring
In[1065]:=

? IGKVertexColoring

IGKVertexColoring[graph, k] attempts to find a k-colouring of graph's vertices. If none exist, {} is returned.

In[1066]:=

? IGKEdgeColoring

IGKEdgeColoring[graph, k] attempts to find a k-colouring of graph's edges. If none exist, {} is returned.

These functions find a colouring with k or fewer colours. They work by transforming the colouring into a satisfiability

problem and using SatisfiabilityInstances.

The available option values are:

◼"ForcedColoring" {v1, v2, …} forces the given vertices to distinct and increasing colours. Normally, the

vertices of a clique are given (which require as many colours as the size of the clique). The main purpose of this option

is to reduce the number of redundant solutions of the equivalent SAT problem, and thus improve performance. When

using edge colouring functions, a set of edges should be passed.

◼"ForcedColoring" "MaxDegreeClique" attempts to find a clique containing a maximum degree vertex, and

forces colours on the clique members. On hard problems it may perform orders of magnitude better than

"ForcedColoring" None.

◼"ForcedColoring" "LargestClique" finds a largest clique, and forces colours on the clique members.

◼"ForcedColoring" None does not force any colours. It is usually the fastest choice for easy problems.

The default setting for "ForcedColoring" is "MaxDegreeClique".

IGraph/M Documentation | 241

The Moser spindle is not 3-colourable, so no solution is returned.
In[1067]:=

moser = GraphData"MoserSpindle";

In[1068]:=

IGKVertexColoring[moser, 3]
Out[1068]=

{}

Find a 4-colouring of the Moser spindle ...
In[1069]:=

IGKVertexColoring[moser, 4]
Out[1069]=

{{4, 1, 3, 1, 3, 2, 2}}

... and visualize it.
In[1070]:=

Graphmoser, GraphStyle "BasicBlack", VertexSize Large //

IGVertexMapColorData[112], VertexStyle First@IGKVertexColoring[#, 4] &
Out[1070]=

Find a 4-edge-colouring of the Petersen graph.
In[1071]:=

PetersenGraphGraphStyle "ThickEdge", EdgeStyle Opacity[2 / 3] //

IGEdgeMapColorData[112], EdgeStyle First@IGKEdgeColoring[#, 4] &

Out[1071]=

The following examples illustrate the use of the "ForcedColoring" option. The 6th order Mycielski graph has chro-

242 | IGraph/M Documentation

matic number 6. A 6-colouring is easily found even with "ForcedColoring" None.

In[1072]:=

g = GraphData"Mycielski", 6;

In[1073]:=

IGKVertexColoringg, 6, "ForcedColoring" None // Timing

Out[1073]=

{0.008607, {{6, 4, 5, 5, 4, 4, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 1, 2, 1}}}

However, showing that the graph is not 5-colourable takes considerably longer.
In[1074]:=

TimeConstrainedIGKVertexColoringg, 5, "ForcedColoring" None, 5

Out[1074]=

$Aborted

Forcing colours in the appropriate way reduces the computation time significantly.
In[1075]:=

IGKVertexColoringg, 5, "ForcedColoring" "MaxDegreeClique" // Timing
Out[1075]=

{0.31951, {}}

Minimum colouring
In[1076]:=

? IGMinimumVertexColoring

IGMinimumVertexColoring[graph] gives a minimum vertex colouring of graph.

In[1077]:=

? IGMinimumEdgeColoring

IGMinimumEdgeColoring[graph] gives a minimum edge colouring of graph.

IGMinimumVertexColoring and IGMinimumEdgeColoring find minimum colourings of graphs, i.e. they find a

colouring with the fewest possible number of colours. The current implementation tries successively larger k-colourings

until it is successful.

IGraph/M Documentation | 243

IGMinimumVertexColoring and IGMinimumEdgeColoring can use the same "ForcedColoring" option

values as IGKVertexColoring and IGKEdgeColoring.

In[1078]:=

WheelGraph7, GraphStyle "BasicBlack", VertexSize Large //

IGVertexMapColorData[97], VertexStyle IGMinimumVertexColoring

Out[1078]=

Find a colouring of a large graph.
In[1079]:=

IGMinimumVertexColoring@RandomGraph[{100, 400}]
Out[1079]=

{3, 1, 1, 3, 2, 2, 2, 1, 4, 1, 2, 4, 3, 4, 4, 4, 1, 1, 1, 2, 4, 4, 3, 1, 2, 1, 4, 2, 4, 3, 3, 2, 3, 3,

3, 2, 4, 1, 3, 3, 1, 3, 2, 4, 4, 2, 1, 2, 2, 4, 3, 4, 4, 2, 4, 3, 3, 2, 1, 1, 4, 2, 3, 4, 3, 1, 1,

2, 1, 3, 4, 1, 1, 2, 2, 2, 1, 2, 2, 3, 4, 3, 1, 2, 1, 3, 2, 1, 3, 2, 4, 3, 4, 2, 3, 4, 3, 3, 4, 4}

Implement a multipartite graph layout: vertex colouring is equivalent to partitioning the vertices of the graph into groups

such that all connections run between different groups, and never within the same group. The colours can be thought of
as the indices of groups. IGMembershipToPartitions can be used to convert from a group-index (i.e. membership)
representation to a partition representation.

In[1080]:=

multipartiteLayoutg_?GraphQ, separation : _?NumericQ : 1.5, opt : OptionsPattern[] :=

Modulen, partitions, partitionSizes, vertexCoordinates,

partitions = IGMembershipToPartitions[g]@IGMinimumVertexColoring[g];

partitionSizes = Length /@ partitions;

n = Lengthpartitions;

vertexCoordinates = Withhl = N@SinPi n, ir = separation Ifn 2, 1 / 2, N@CosPi n,

Catenate@Table

RotationTransform2 Pi n k#, ir & /@ Subdivide-hl, hl, partitionSizes〚k〛 - 1,

{k, 1, n}

;

IGReorderVerticesCatenatepartitions, g, VertexCoordinates vertexCoordinates, opt

;

244 | IGraph/M Documentation

Lay out a bipartite graph.
In[1081]:=

g = IGBipartiteGameGNM[10, 10, 30];

multipartiteLayout[g]
Out[1082]=

Lay out multipartite graphs.
In[1083]:=

g = RandomGraph[{40, 40}];

multipartiteLayout[g]
Out[1084]=

In[1085]:=

g = RandomGraph[{40, 160}];

multipartiteLayoutg, GraphStyle "BasicBlack", EdgeStyle Opacity[0.2]
Out[1086]=

IGraph/M Documentation | 245

Compute a minimum colouring of a triangulation. It can be shown, e.g. based on Brooks’s theorem, that any triangulation

of a polygon is 3-colourable.
In[1087]:=

mesh = DelaunayMesh[RandomReal[1, {20, 2}], MeshCellStyle {1 Black}];

col = IGMinimumVertexColoring@IGMeshCellAdjacencyGraph[mesh, 2];

SetProperty[{mesh, {2, All}}, MeshCellStyle ColorData[97] /@ col]
Out[1089]=

Find a minimum edge colouring of a graph.
In[1090]:=

Graph

GraphData"SixteenCellGraph",

GraphStyle "ThickEdge", EdgeStyle Opacity[2 / 3]

 //

IGEdgeMap

ColorData[104],

EdgeStyle IGMinimumEdgeColoring

Out[1090]=

Chromatic number
In[1091]:=

? IGChromaticNumber

IGChromaticNumber[graph] gives the chromatic number of graph.

246 | IGraph/M Documentation

In[1092]:=

? IGChromaticIndex

IGChromaticIndex[graph] gives the chromatic index of graph.

The chromatic number of a graph is the smallest number of colours needed to colour its vertices. The chromatic index, or
edge chromatic number, is the smallest number of colours needed to colour its edges.

Find the chromatic number and chromatic index of a graph.
In[1093]:=

g = GraphData["IcosahedralGraph"]
Out[1093]=

In[1094]:=

IGChromaticNumber[g], IGChromaticIndex[g]

Out[1094]=

{4, 5}

The implementation of IGChromaticNumber and IGChromaticIndex is effectively the following:
In[1095]:=

Max@IGMinimumVertexColoring[g], Max@IGMinimumEdgeColoring[g]
Out[1095]=

{4, 5}

Perfect graphs
In[1096]:=

? IGPerfectQ

IGPerfectQ[graph] tests if graph is perfect. The chromatic number
and the clique number are the same in every induced subgraph of a perfect graph.

IGPerfectQ tests if a graph is perfect. The clique number and the chromatic number is the same for every induced

subgraph of a perfect graph.

IGraph/M Documentation | 247

The current implementation of IGPerfectQ uses the strong perfect graph theorem: it checks that neither the graph nor
its complement have a graph hole of odd length.

In[1097]:=

g = GraphData"GeneralizedQuadrangle", {2, 1}

Out[1097]=

In[1098]:=

IGPerfectQ[g]
Out[1098]=

True

The clique number and the chromatic number is the same for every induced subgraph.
In[1099]:=

AllTrue

Subgraph[g, #] & /@ Subsets@VertexList[g],

IGCliqueNumber[#] IGChromaticNumber[#] &

Out[1099]=

True

Utility functions
In[1100]:=

? IGVertexColoringQ

IGVertexColoringQ[graph, coloring] tests whether neighbouring vertices all have differing colours.

IGVertexColoringQ checks whether neighbouring vertices of a graph are assigned different colours.

The colours may be given as a list, with the same ordering as VertexList[graph].

In[1101]:=

IGVertexColoringQ

1 2

3

, {1, 2, 3}

Out[1101]=

True

248 | IGraph/M Documentation

In[1102]:=

IGVertexColoringQ

1 2

3

, {1, 2, 2}

Out[1102]=

False

The colours may also be given as an association from vertices to colours.
In[1103]:=

IGVertexColoringQ

1 2

3

, 1 3, 2 2, 3 1

Out[1103]=

True

Any expression may be used for the colours, not only integers.
In[1104]:=

IGVertexColoringQ

1 2

3

, 1 "a", 2 "b", 3 "c"

Out[1104]=

True

Processes on graphs

Random walks

IGRandomWalk
In[1105]:=

? IGRandomWalk

IGRandomWalk[graph, start, steps] takes a random walk of
length steps on graph, starting at vertex 'start'. The list of traversed vertices is returned.

IGRandomWalk[] takes a random walk over a directed or undirected graph. If the graph is weighted, the next edge to

traverse is selected with probability proportional to its weight.

The available options are:

◼EdgeWeight can be used to override the existing weights of the graph. EdgeWeight None will ignore any existing

weights.

Traversing self-loops in different directions is considered as distinct probabilities in an undirected graph. Thus vertices 1

and 3 are visited more often in the below graphs than vertex 2:
In[1106]:=

g = Graph[{1 1, 1 2, 2 3, 3 3}, VertexLabels "Name"]
Out[1106]=

1 2 3

IGraph/M Documentation | 249

In[1107]:=

IGRandomWalk[g, 1, 100000] // Counts // KeySort
Out[1107]=

1 37453, 2 25082, 3 37465

This is consistent with their degrees:
In[1108]:=

VertexDegree[g]
Out[1108]=

{3, 2, 3}

Convert the graph to a directed version to traverse self-loops only in one direction.
In[1109]:=

dg = DirectedGraph[g]
Out[1109]=

1 2 3

In[1110]:=

{VertexOutDegree[dg], VertexInDegree[dg]}
Out[1110]=

{{2, 2, 2}, {2, 2, 2}}

In[1111]:=

IGRandomWalk[dg, 1, 100000] // Counts // KeySort
Out[1111]=

1 33345, 2 33317, 3 33338

If the walker gets stuck, a list shorter than steps will be returned. This may happen in a non-connected directed graph,
or in a single-vertex graph component.

In[1112]:=

IGRandomWalk[IGEmptyGraph[1], 1, 10]
Out[1112]=

{1}

In[1113]:=

IGRandomWalk[Graph[{1 2}], 1, 10]
Out[1113]=

{1, 2}

How much time does a random walker spend on each node of a network?
In[1114]:=

g = IGBarabasiAlbertGame50, 2, DirectedEdges False
Out[1114]=

250 | IGraph/M Documentation

In[1115]:=

counts = Counts@IGRandomWalkg, First@VertexList[g], 10000 /@ VertexList[g]

Out[1115]=

{591, 550, 411, 906, 545, 198, 261, 411, 242, 420, 151, 247, 215, 171, 280,

113, 88, 216, 277, 133, 115, 158, 103, 99, 143, 93, 100, 123, 254, 188, 155, 175,

89, 113, 123, 96, 100, 87, 141, 81, 88, 93, 98, 111, 106, 115, 101, 96, 125, 105}

The exact answer can be computed as the leading eigenvector of the process’s stochastic matrix:
In[1116]:=

sm = Transpose
AdjacencyMatrix[g]

VertexDegree[g]
;

{{val}, {vec}} = EigensystemN[sm], 1, Method "Arnoldi", "Criteria" "RealPart";

Compare the exact answer with a finite sample:
In[1118]:=

ListPlot
vec

Total[vec]
,

counts

Total[counts]
, PlotRange All,

PlotLegends {"exact", "sampled"}, PlotStyle PointSize[0.02]

Out[1118]=

10 20 30 40 50

0.02

0.04

0.06

0.08

exact

sampled

IGraph/M Documentation | 251

Random walk on a square grid.
In[1119]:=

grid = IGSquareLattice[{50, 50}];

counts = Counts@IGRandomWalkgrid, 1, 5000;

Graphgrid,

VertexStyle

Prepend

NormalColorData["SolarColors"] /@ Normalize[counts, Max],

Black (* colour of unvisited nodes, i.e. default colour *)

,

EdgeShapeFunction None,

Background Black

Out[1121]=

The fraction of nodes reached after n steps on a grid and a comparable random regular graph.
In[1122]:=

nodesReached[graph_] :=

Length@Union@IGRandomWalk[graph, 1, VertexCount[graph]] VertexCount[graph]

In[1123]:=

grid = IGSquareLattice{50, 50}, "Periodic" True;

regular = IGKRegularGame[50^2, 4];

In[1125]:=

Table

nodesReachedgrid, nodesReached[regular],

{5000}

 // Transpose // Histogram

Out[1125]=

0.20 0.25 0.30 0.35 0.40 0.45 0.50
0

500

1000

1500

2000

2500

3000

252 | IGraph/M Documentation

Generate random spanning trees using loop erased random walks.
In[1126]:=

randomSpanningTree[graph_?GraphQ] :=

Modulevisited = , i = 2, k = 1, batchSize = 2 VertexCount[graph], walk,

walk = IGRandomWalkgraph, RandomChoice@VertexList[graph], batchSize;

visited[walk〚1〛] = True;

Whilek < VertexCount[graph],

(* register a traversed edge only when it leads to a yet unvisited vertex *)

If! TrueQvisitedwalki,

Sowwalki - 1 walki;

visitedwalki = True;

k++

;

i++;

(* if the walk has not yet visited all vertices, keep walking *)

Ifi > Length[walk],

walk = Joinwalk, Rest@IGRandomWalkgraph, Last[walk], batchSize

;

 // Reap // Last // First

By taking random spanning trees of spatially embedded planar graphs, we can generate mazes.
In[1127]:=

graph = IGSquareLattice[{15, 15}];

GraphVertexList[graph], randomSpanningTree[graph],

VertexCoordinates GraphEmbedding[graph],

GraphStyle "ThickEdge", VertexShapeFunction None, EdgeStyle

Out[1128]=

IGraph/M Documentation | 253

In[1129]:=

graph = IGMeshGraph@DiscretizeRegion@Disk[];

GraphVertexList[graph], randomSpanningTree[graph],

VertexCoordinates GraphEmbedding[graph],

GraphStyle "ThickEdge", VertexShapeFunction None,

EdgeStyle Directive , AbsoluteThickness[4]

Out[1130]=

Take a sample of a large graph using a random walk. The following graph is too large to easily visualize, but visualizing a

random-walk-based sample immediately shows signs of a community structure.
In[1131]:=

g = ExampleData"NetworkGraph", "AstrophysicsCollaborations";

VertexCount[g], VertexCount@IGGiantComponent[g]

Out[1132]=

{16706, 14845}

In[1133]:=

Subgraphg, IGRandomWalkg, RandomChoice@VertexList@IGGiantComponent[g], 200

Out[1133]=

In[1134]:=

CommunityGraphPlot[%]
Out[1134]=

254 | IGraph/M Documentation

IGRandomEdgeWalk and IGRandomEdgeIndexWalk
In[1135]:=

? IGRandomEdgeWalk

IGRandomEdgeWalk[graph, start, steps] takes a random walk of
length steps on graph, starting at vertex 'start'. The list of traversed edges is returned.

In[1136]:=

? IGRandomEdgeIndexWalk

IGRandomEdgeIndexWalk[graph, start, steps] takes a random walk of length
steps on graph, starting at vertex 'start'. The list of indices for traversed edges is returned.

IGRandomEdgeWalk takes a random walk on a graph and returns the list of traversed edges. If the graph is weighted,

the next edge to traverse is selected with probability proportional to its weight.

The available options are:

◼EdgeWeight can be used to override the existing weights of the graph. EdgeWeight None will ignore any existing

weights.

Take a random walk on a De Bruijn graph, and retrieve the traversed edges.
In[1137]:=

g = IGDeBruijnGraph[3, 3];

IGRandomEdgeWalkg, RandomChoice@VertexList[g], 20

Out[1138]=

{13 11, 11 6, 6 16, 16 21, 21 9, 9 25, 25 21, 21 7, 7 20,

20 6, 6 16, 16 19, 19 1, 1 3, 3 7, 7 19, 19 2, 2 4, 4 11, 11 4}

IGRandomEdgeIndexWalk returns the list of indices of the traversed edges instead. This makes it useful for working

with multigraphs, as it allows distinguishing between parallel edges.

As an example application, let us consider the following set of affine transformations:
In[1139]:=

scale12 = ScalingTransform[{1 / 2, 1 / 2}];

a11 = TranslationTransform1 / 4, 3 4@*scale12;

a21 = RotationTransformPi 3@*scale12;

b21 = TranslationTransform3 / 4, 3 4@*RotationTransform-Pi 3@*scale12;

a12 = TranslationTransform[{1 / 2, 0}]@*ScalingTransform[{1 / 2, -1 / 2}];

a22 = scale12;

In[1145]:=

trafos = {a11, a21, b21, a12, a22};

Let us visualize them by showing an initial (black) triangle and its (red) transformation.
In[1146]:=

tri = Triangle{0, 0}, {1, 0}, 1 / 2, 3 2;

Graphicstri, Red, GeometricTransformationtri, #, ImageSize Tiny & /@ trafos
Out[1147]=

 , , , ,

IGraph/M Documentation | 255

These transformations describe the mutual self-similarity structure of two fractal curves, according to the following

directed graph. Each edge of the graph corresponds to a transformation.
In[1148]:=

graph = Graph{1 1, 2 1, 2 1, 1 2, 2 2},

VertexLabels Placed["Name", Center],

VertexShape 1 , 2 , PerformanceGoal "Quality",

VertexSize
1

3
, ImageSize 400

Out[1148]=

12

Let us compute a random walk on this graph, and iteratively apply transformations to the point {0, 0} according to the

traversed edges.
In[1149]:=

walk = IGRandomEdgeIndexWalk[graph, 1, 20000];

pts = Rest@FoldList#2[#1] &, {0., 0.}, trafos〚walk〛;

256 | IGraph/M Documentation

The resulting list of points will approximate the union of the two fractal curves.
In[1151]:=

Image@GraphicsAbsolutePointSize[1], Point[pts]

Out[1151]=

The two curves can be separated by filtering points according to which graph vertex the corresponding directed edge

targets. For example, if the point was generated by a transformation corresponding to 1 2, it will belong to curve 2.
In[1152]:=

targets = Last /@ EdgeList[graph]
Out[1152]=

{1, 1, 1, 2, 2}

In[1153]:=

Image@GraphicsAbsolutePointSize[1], Point@Pick[pts, targets〚walk〛, 1]

Out[1153]=

IGraph/M Documentation | 257

In[1154]:=

Image@GraphicsAbsolutePointSize[1], Point@Pick[pts, targets〚walk〛, 2]

Out[1154]=

The technique described here is taken from “Generating self-affine tiles and their boundaries” by Mark McClure.

Epidemic models

IGSIRProcess
In[1155]:=

? IGSIRProcess

IGSIRProcess[graph, {β, γ}] runs a stochastic epidemic SIR model on
graph with infection rate β and recovery rate γ, and returns a time series of {S, I, R} values.

IGSIRProcess[graph, {β, γ}, n] performs n SIR model runs.

IGSIRProcess simulates a stochastic version of the well known SIR model of disease spreading. In this model, each

node of the network may be in one of three states: susceptible, infected or recovered, denoted by S, I and R, respectively.
A susceptible node with k infected neighbours becomes infected with rate k β, while an infected node recovers with rate

γ. At the start of the simulation, a random node is chosen to be infected. The simulation runs until no more infected nodes

are left.

When performing a single simulation, IGSIRProcess returns a TimeSeries expression of {s, i, r} values. When

multiple runs are requested, the resulting time series are combined into a TemporalData expression.
In[1156]:=

g = IGWattsStrogatzGame[100, 0.05];

Perform a single SIR simulation:
In[1157]:=

ts = IGSIRProcess[g, {5, 1}]
Out[1157]=

TimeSeries Time: 0. to 4.37
Data points: 200

258 | IGraph/M Documentation

http://www.mathematica-journal.com/2009/01/generating-self-affine-tiles-and-their-boundaries/

Plot the results with a legend:
In[1158]:=

ListLinePlot[ts, PlotLegends ts["ComponentNames"]]
Out[1158]=

1 2 3 4

20

40

60

80

100

S

I

R

Plot only the number of infected nodes:
In[1159]:=

(* In Mathematica 12.0 and later,

ts["PathComponent", "I"] can also be used. *)

ListLinePlotts["PathComponent", 2],

AxesLabel "time", "infected", PlotStyle ColorData[97][2]
Out[1159]=

1 2 3 4
time

10

20

30

40

50

60

70

infected

Find the number of susceptible, infected and recovered nodes at a specific time point:
In[1160]:=

ts[1.0]
Out[1160]=

{6., 65., 29.}

The ResamplingMethod of the TimeSeries object is set to 0th order interpolation, therefore the last value is used beyond

the last available time point.
In[1161]:=

ts[10]

InterpolatingFunction: Input value {-10} lies outside the range of data in the interpolating function. Extrapolation will be used.

Out[1161]=

{0., 0., 100.}

Perform 100 simulations simultaneously:
In[1162]:=

td = IGSIRProcess[g, {5, 1}, 100]
Out[1162]=

TemporalData Time: 0. to 9.26
Data points: 17970 Paths: 100

IGraph/M Documentation | 259

Plot the median number of susceptible, infected and recovered nodes:
In[1163]:=

Show

ListLinePlot[#, PlotStyle GrayLevel[0, 0.1], PlotRange {0, VertexCount[g]}],

Quiet@PlotMedian[#[t]], {t, 0, 4}, PlotStyle Red

 & /@ td["PathComponents"] // GraphicsColumn
Out[1163]=

0 1 2 3

20

40

60

80

100

0 1 2 3

20

40

60

80

100

0 1 2 3

20

40

60

80

100

The sum of the three components, S + I + R, always equals the total number of graph nodes.
In[1164]:=

First@Normal@Total[td["PathComponents"]] // Short
Out[1164]//Short=

{{0., 100.}, {0.00200952, 100.}, 197, {5.6842, 100.}}

260 | IGraph/M Documentation

In the next example, we compare epidemic spreading on a periodic grid, i.e. a network that only has spatially local
connections, with a rewired version of the same network which also includes long range links. We rewire 5% of links while

ensuring that the graph stays connected.
In[1165]:=

g1 = IGSquareLattice{30, 30}, "Periodic" True;

g2 = IGTryUntil[IGConnectedQ]IGRewireEdges[g1, 0.05];

Generate 1000 simulations for each network.
In[1167]:=

r1 = IGSIRProcess[g1, {1, 1}, 1000];

r2 = IGSIRProcess[g2, {1, 1}, 1000];

Plot the histogram of the total duration of the epidemic.
In[1169]:=

Histogramr1"LastTimes", r2"LastTimes", ChartLegends "grid", "rewired"

Out[1169]=

10 20 30 40 50
0

50

100

150

200

250

300

grid

rewired

Plot the fraction of recovered nodes at the end of the epidemic.
In[1170]:=

tmax = Maxr1"MaximumTime", r2"MaximumTime";

Histogram

r1["PathComponent", 3]"SliceData", tmax VertexCount[g1],

r2["PathComponent", 3]"SliceData", tmax VertexCount[g2] // Quiet,

{0, 1, 0.02},

ChartLegends "grid", "rewired"

Out[1171]=

0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

grid

rewired

Planar graphs
A graph is said to be planar if it can be drawn in the plane without edge crossings.

A useful concept when working with planar graphs is their combinatorial embedding. A combinatorial embedding of a

graph is a counter-clockwise ordering of the incident edges around each vertex. IGraph/M represents combinatorial
embeddings as associations from vertices to an ordering of their neighbours. Currently, only embeddings of simple

graphs are supported.

IGraph/M Documentation | 261

https://en.wikipedia.org/wiki/Rotation_system

Some of the planar graph functionality makes use of the LEMON Graph Library.

IGPlanarQ
In[1172]:=

? IGPlanarQ

IGPlanarQ[graph] tests if graph is planar.
IGPlanarQ[embedding] tests if a combinatorial embedding is planar.

IGPlanarQ[graph] checks if a graph is planar using the Boyer–Myrvold algorithm.

In[1173]:=

IGPlanarQ@GraphData"Apollonian", 6
Out[1173]=

True

In[1174]:=

IGPlanarQ@CompleteGraph[5]
Out[1174]=

False

IGPlanarQ[embedding] checks if a combinatorial embedding is planar. The following are both embeddings of the K4

complete graph. However, only the first one is planar.
In[1175]:=

emb1 = 1 {2, 3, 4}, 2 {1, 4, 3}, 3 {2, 4, 1}, 4 {3, 2, 1};

emb2 = 1 {2, 4, 3}, 2 {4, 3, 1}, 3 {1, 2, 4}, 4 {3, 1, 2};

In[1177]:=

IGPlanarQ /@ {emb1, emb2}
Out[1177]=

{True, False}

The second embedding generates only 2 faces instead of 4, which can be embedded on a torus, but not in the plane (or on

a sphere).
In[1178]:=

Length /@ IGFaces /@ {emb1, emb2}
Out[1178]=

{4, 2}

Unlike the built-in PlanarGraphQ, IGPlanarQ considers the null graph to be planar.
In[1179]:=

{IGPlanarQ@IGEmptyGraph[], PlanarGraphQ@IGEmptyGraph[]}
Out[1179]=

{True, True}

IGMaximalPlanarQ
In[1180]:=

? IGMaximalPlanarQ

IGMaximalPlanarQ[graph] tests if graph is maximal planar.

A simple graph is maximal planar if no new edges can be added to it without breaking planarity. Maximal planar graphs

are sometimes called triangulated graphs or triangulations.

262 | IGraph/M Documentation

http://lemon.cs.elte.hu/

The 3-cycle is maximal planar.
In[1181]:=

IGMaximalPlanarQ[CycleGraph[3]]
Out[1181]=

True

The 4-cycle is not because a chord can be added to it without breaking planarity.
In[1182]:=

IGMaximalPlanarQ[CycleGraph[4]]
Out[1182]=

False

In[1183]:=

IGPlanarQ[EdgeAdd[CycleGraph[4], 1 3]]
Out[1183]=

True

Apollonian graphs are maximal planar.
In[1184]:=

g = GraphData"Apollonian", 2

Out[1184]=

In[1185]:=

IGMaximalPlanarQ[g]
Out[1185]=

True

All faces of a maximal planar graph are triangles.
In[1186]:=

Length /@ IGFaces[g]
Out[1186]=

{3, 3, 3, 3, 3, 3, 3, 3, 3, 3}

Therefore the edge count E and the face count F of a maximal planar graph on more than 2 vertices satisfy 2 E = 3 F. Each

edge is incident to two faces and each face is incident to three edges.
In[1187]:=

{2 EdgeCount[g], 3 Length@IGFaces[g]}
Out[1187]=

{30, 30}

IGraph/M Documentation | 263

IGOuterplanarQ
In[1188]:=

? IGOuterplanarQ

IGOuterplanarQ[graph] tests if graph is outerplanar.
IGOuterplanarQ[embedding] tests if a combinatorial embedding is outerplanar.

IGOuterplanarQ[graph] checks if a graph is outerplanar, i.e. if it can be drawn in the plane without edge crossings

and with all vertices being on the outer face.

Outerplanar graphs are also called circular planar. They can be drawn without edge crossings and all vertices on a circle.
See the documentation of IGOuterplanarEmbedding for an example.

In[1189]:=

IGOuterplanarQ

Out[1189]=

False

In[1190]:=

IGOuterplanarQ

Out[1190]=

True

IGOuterplanarQ[embedding] checks if a combinatorial embedding is outerplanar. Not all planar embeddings of an

outerplanar graph are also outerplanar embeddings.

Consider the following outerplanar graph …

In[1191]:=

g = IGShorthand["0-1-2-3-4-2,1-4"]
Out[1191]=

0 1

2

3

4

In[1192]:=

IGOuterplanarQ[g]
Out[1192]=

True

… and two of its embeddings:
In[1193]:=

emb1 = 0 {1}, 1 {2, 0, 4}, 2 {1, 3, 4}, 3 {2, 4}, 4 {3, 1, 2};

emb2 = 0 {1}, 1 {0, 2, 4}, 2 {1, 3, 4}, 3 {2, 4}, 4 {3, 1, 2};

They are both planar, but only the second one is outerplanar.
In[1195]:=

IGPlanarQ /@ {emb1, emb2}
Out[1195]=

{True, True}

In[1196]:=

IGOuterplanarQ /@ {emb1, emb2}
Out[1196]=

{False, True}

264 | IGraph/M Documentation

In[1197]:=

Graphg, VertexCoordinates IGEmbeddingToCoordinates[#] & /@ {emb1, emb2}

Out[1197]=

0

1

2

34

,
01

2

3

4

IGKuratowskiEdges
In[1198]:=

? IGKuratowskiEdges

IGKuratowskiEdges [graph] gives the edges belonging to a Kuratowski subgraph.

IGKuratowskiEdges finds a Kuratowski subgraph of a non-planar graph. The subgraph is returned as a set of edges. If

the graph is planar, {} is returned.

According to Kuratowski’s theorem, any non-planar graph contains a subgraph homeomorphic to the K5 complete graph

or the K3,3 complete bipartite graph. This is called a Kuratowski subgraph.

Generate a random graph, which is non-planar with high probability.
In[1199]:=

g = RandomGraph[{20, 40}]
Out[1199]=

In[1200]:=

IGPlanarQ[g]
Out[1200]=

False

Compute a set of edges belonging to a Kuratowski subgraph.
In[1201]:=

kur = IGKuratowskiEdges[g]
Out[1201]=

{19 20, 15 20, 14 18, 12 18, 11 19, 10 14, 9 12, 8 15,

8 12, 7 11, 6 9, 5 15, 4 19, 4 14, 4 8, 3 7, 3 6, 2 10, 2 5}

IGraph/M Documentation | 265

Highlight the Kuratowski subgraph.
In[1202]:=

HighlightGraph[g, Graph[kur]]
Out[1202]=

Display the Kuratowski subgraph on its own.
In[1203]:=

Graph[kur]
Out[1203]=

By smoothening the Kuratowski subgraph, we obtain either K5 or K3,3.

In[1204]:=

IGSmoothen@Graph[kur]
Out[1204]=

In[1205]:=

IGHomeomorphicQ[Graph[kur], #] & /@ {CompleteGraph[5], CompleteGraph[{3, 3}]}
Out[1205]=

{False, True}

266 | IGraph/M Documentation

For planar graphs, {} is returned.
In[1206]:=

IGKuratowskiEdges@CycleGraph[5]
Out[1206]=

{}

IGFaces
In[1207]:=

? IGFaces

IGFaces[graph] gives the faces of a planar graph.
IGFaces[embedding] gives the faces that correspond to a combinatorial embedding.

IGFaces returns the faces of a planar graph, or the faces corresponding to a specific (not necessarily planar) embedding.
The faces are represented by a counter-clockwise ordering of vertices. The current implementation ignores self-loops and

multi-edges.

The faces of a planar graph are unique if the graph is 3-vertex-connected. This can be checked using

KVertexConnectedGraphQ.
In[1208]:=

g = GraphData["DodecahedralGraph"]
Out[1208]=

In[1209]:=

IGFaces[g]
Out[1209]=

{{1, 14, 9, 10, 15}, {1, 15, 4, 8, 16}, {1, 16, 7, 3, 14}, {2, 5, 11, 12, 6},

{2, 6, 20, 18, 13}, {2, 13, 17, 19, 5}, {3, 7, 11, 5, 19}, {3, 19, 17, 9, 14},

{4, 15, 10, 18, 20}, {4, 20, 6, 12, 8}, {7, 16, 8, 12, 11}, {9, 17, 13, 18, 10}}

In[1210]:=

KVertexConnectedGraphQ[g, 3]
Out[1210]=

True

IGraph/M Documentation | 267

If the graph is not connected and has C connected components, then C - 1 faces will be redundant.
In[1211]:=

g = IGDisjointUnion{CycleGraph[3], CycleGraph[3]}, VertexLabels Automatic

Out[1211]=

{1, 1}

{1, 2}{1, 3}

{2, 1}

{2, 2}{2, 3}

In[1212]:=

IGFaces[g]
Out[1212]=

{{{1, 1}, {1, 2}, {1, 3}}, {{1, 1}, {1, 3}, {1, 2}}, {{2, 1}, {2, 2}, {2, 3}}, {{2, 1}, {2, 3}, {2, 2}}}

In the above-drawn arrangement, the outer faces of the two triangles are the same face. However, one triangle could have

been drawn inside of the other. Then the inner face of one would be the same as the outer face of the other. Thus the

choice of faces to be eliminated as redundant is arbitrary, and is left up to the user.

IGFaces can also be used with a non-planar combinatorial embedding. The below embeddings both belong to the 4-
vertex complete graph, however, only the first is planar.

In[1213]:=

emb1 = 1 {2, 3, 4}, 2 {1, 4, 3}, 3 {2, 4, 1}, 4 {3, 2, 1};

emb2 = 1 {2, 4, 3}, 2 {4, 3, 1}, 3 {1, 2, 4}, 4 {3, 1, 2};

In[1215]:=

IGFaces[emb1]
Out[1215]=

{{1, 2, 3}, {1, 3, 4}, {1, 4, 2}, {2, 4, 3}}

In[1216]:=

IGFaces[emb2]
Out[1216]=

{{1, 2, 3, 1, 4, 3, 2, 4}, {1, 3, 4, 2}}

Determine the genus g of an embedding belonging to a connected graph based on its face count F, vertex count V , and

edge count E, using the formula for the Euler characteristic 2 g - 2 = χ = V - E + F.

In[1217]:=

genusemb_?IGEmbeddingQ := (2 + Total[Length /@ emb] / 2 - Length[emb] - Length@IGFaces[emb]) / 2

268 | IGraph/M Documentation

In[1218]:=

genus /@ {emb1, emb2}
Out[1218]=

{0, 1}

IGDualGraph
In[1219]:=

? IGDualGraph

IGDualGraph[graph] gives the dual graph of a planar graph.
IGDualGraph[embedding] gives the dual graph corresponding

to a specific embedding of a graph. The embedding does not need to be planar.

IGDualGraph returns a dual graph of a planar graph, or the dual corresponding to a specific embedding. The ordering

of the dual graph’s vertices is consistent with the result of IGFaces.

Limitations:

◼Multi-edges and self-loops are currently ignored.

◼ The result is always a simple graph. No multi-edges or self-loops are generated

IGraph/M Documentation | 269

The dual of a simple 3-vertex-connected graph is simple and unique, thus such graphs are not affected by the above

limitations.
In[1220]:=

TableForm

Table[{CompleteGraph[k], IGDualGraph@CompleteGraph[k]}, {k, 1, 4}],

TableHeadings {None, {"graph", "dual"}}

Out[1220]//TableForm=

graph dual

Currently, if the input is a graph, it must be planar.
In[1221]:=

IGDualGraph[CompleteGraph[5]]

IGraphM: planarEmbedding: The graph is not planar.

Out[1221]=

$Failed

If the input is a combinatorial embedding, it does not need to be planar.
In[1222]:=

emb = 1 {2, 4, 3}, 2 {4, 3, 1}, 3 {1, 2, 4}, 4 {3, 1, 2};

IGPlanarQ[emb]
Out[1223]=

False

270 | IGraph/M Documentation

In[1224]:=

IGDualGraph[emb]
Out[1224]=

Find the dual of a square lattice graph. The dual graph also includes the outer face as a vertex.
In[1225]:=

IGSquareLattice[{5, 5}]
Out[1225]=

In[1226]:=

IGDualGraph[%]
Out[1226]=

IGraph/M Documentation | 271

The dual is unique if the graph is 3-vertex-connected. This can be verified using KVertexConnectedGraphQ. In this

case, IGDualGraph@IGDualGraph[g] is isomorphic to g.

In[1227]:=

g = GraphData["IcosahedralGraph"]
Out[1227]=

In[1228]:=

dg = IGDualGraph[g]
Out[1228]=

In[1229]:=

IGIsomorphicQ[dg, GraphData["DodecahedralGraph"]]
Out[1229]=

True

In[1230]:=

IGIsomorphicQ[IGDualGraph[dg], g]
Out[1230]=

True

If the graph is not connected, the dual of each component is effectively computed separately.
In[1231]:=

IGDualGraph@IGDisjointUnion[{CycleGraph[3], CycleGraph[3]}]
Out[1231]=

272 | IGraph/M Documentation

IGEmbeddingQ
In[1232]:=

? IGEmbeddingQ

IGEmbeddingQ[embedding] tests if embedding represents a combinatorial embedding of a simple graph.

IGEmbeddingQ checks if an embedding is valid, and whether it belongs to a graph without self-loops and multi-edges.

This is a valid combinatorial embedding of the graph 1 3 2.
In[1233]:=

IGEmbeddingQ[1 {3}, 2 {3}, 3 {1, 2}]

Out[1233]=

True

The following embeddings do not belong to simple (i.e. loop free and multi-edge free) graphs:
In[1234]:=

IGEmbeddingQ[1 {3}, 2 {3, 3}, 3 {1, 2, 2}]

Out[1234]=

False

In[1235]:=

IGEmbeddingQ[1 {1, 2}, 2 {1}]

Out[1235]=

False

The following embedding is not valid because it does not contain the arc 2 1 but it does contain 1 2.
In[1236]:=

IGEmbeddingQ[1 {2}, 2 {}]

Out[1236]=

False

IGPlanarEmbedding
In[1237]:=

? IGPlanarEmbedding

IGPlanarEmbedding[graph] gives a planar combinatorial embedding of a graph.

IGraph/M Documentation | 273

IGPlanarEmbedding computes a combinatorial embedding of a planar graph. The current implementation ignores

self-loops and multi-edges.
In[1238]:=

g = IGShorthand["a:b:c:d -- a:b:c:d"]
Out[1238]=

a

b

c

d

In[1239]:=

emb = IGPlanarEmbedding[g]
Out[1239]=

a {b, c, d}, b {a, d, c}, c {b, d, a}, d {c, b, a}

The representation of a combinatorial embedding is also a valid adjacency list, thus it can be easily converted back to an

undirected graph using IGAdjacencyGraph.
In[1240]:=

IGAdjacencyGraphemb, VertexLabels Automatic

Out[1240]=

a

b

c

d

IGOuterplanarEmbedding
In[1241]:=

? IGOuterplanarEmbedding

IGOuterplanarEmbedding[graph] gives an outerplanar combinatorial embedding of a graph.

274 | IGraph/M Documentation

IGOuterplanarEmbedding returns an outerplanar combinatorial embedding of a graph, if it exists. If the correspond-

ing graph is connected, then one face of such an embedding contains all vertices of the graph.
In[1242]:=

g = IGTriangularLattice[{5, 2}]
Out[1242]=

In[1243]:=

emb = IGOuterplanarEmbedding[g]
Out[1243]=

1 {6, 2}, 2 {1, 6, 7, 8, 3}, 3 {2, 8, 4}, 4 {3, 8, 9, 10, 5}, 5 {4, 10},

6 {2, 1, 7}, 7 {6, 8, 2}, 8 {7, 9, 4, 3, 2}, 9 {8, 10, 4}, 10 {9, 5, 4}

In[1244]:=

IGLayoutCircle@IGReorderVerticesFirst@MaximalBy[Length]@IGFaces[emb], g
Out[1244]=

IGraph/M Documentation | 275

IGCoordinatesToEmbedding
In[1245]:=

? IGCoordinatesToEmbedding

IGCoordinatesToEmbedding [graph] gives a combinatorial embedding based on the vertex coordinates of graph.
IGCoordinatesToEmbedding [graph, coordinates] uses the given coordinates instead of the VertexCoordinates property.

IGCoordinatesToEmbedding computes a combinatorial embedding, i.e. a cyclic ordering of neighbours around each

vertex, based on the given vertex coordinates. By default, the coordinates are taken from the VertexCoordinates

property.
In[1246]:=

g = CompleteGraph[4, VertexLabels "Name"]
Out[1246]=

1

2

3

4

In[1247]:=

emb = IGCoordinatesToEmbedding[g]
Out[1247]=

1 {4, 2, 3}, 2 {3, 1, 4}, 3 {4, 1, 2}, 4 {2, 1, 3}

The embedding can then be used to compute the faces of the graph …

In[1248]:=

IGFaces[emb]
Out[1248]=

{{1, 4, 2}, {1, 2, 3}, {1, 3, 4}, {2, 4, 3}}

276 | IGraph/M Documentation

… or can be converted back to coordinates.
In[1249]:=

Graphg, VertexCoordinates IGEmbeddingToCoordinates[emb]

Out[1249]=

1

2

3

4

If we start with a non-planar graph layout, the embedding will not be planar either.
In[1250]:=

g = CompleteGraph4, GraphLayout "SpringElectricalEmbedding", VertexLabels "Name"

Out[1250]=

12

34

In[1251]:=

emb = IGCoordinatesToEmbedding[g]
Out[1251]=

1 {2, 3, 4}, 2 {1, 3, 4}, 3 {4, 2, 1}, 4 {2, 1, 3}

In[1252]:=

IGFaces[emb]
Out[1252]=

{{1, 2, 4, 3}, {1, 3, 2, 1, 4, 2, 3, 4}}

In[1253]:=

IGPlanarQ[emb]
Out[1253]=

False

IGraph/M Documentation | 277

IGEmbeddingToCoordinates
In[1254]:=

? IGEmbeddingToCoordinates

IGEmbeddingToCoordinates [embedding] gives the
coordinates of a planar drawing based on the given combinatorial embedding.

IGEmbeddingToCoordinates computes the coordinates of a straight-line planar drawing based on the given combi-

natorial embedding, using Schnyder’s algorithm.
In[1255]:=

emb1 = 1 {2, 3, 4}, 2 {1, 4, 3}, 3 {2, 4, 1}, 4 {3, 2, 1};

In[1256]:=

IGEmbeddingToCoordinates[emb1]
Out[1256]=

{{1, 1}, {1, 0}, {2, 1}, {0, 2}}

The embedding must be planar.
In[1257]:=

emb2 = 1 {2, 4, 3}, 2 {4, 3, 1}, 3 {1, 2, 4}, 4 {3, 1, 2};

In[1258]:=

IGPlanarQ[emb2]
Out[1258]=

False

In[1259]:=

IGEmbeddingToCoordinates[emb2]

IGraphM: embeddingToCoordinates: The embedding is not planar.

Out[1259]=

$Failed

IGLayoutPlanar
In[1260]:=

? IGLayoutPlanar

IGLayoutPlanar[graph, options] lays out a planar graph using Schnyder's algorithm.

IGLayoutPlanar computes a layout of a planar graph without edge crossings using Schnyder’s algorithm. The vertex

coordinates will lie on an (n - 2) ×(n - 2) integer grid, where n is the number of vertices.

Create a random planar graph and lay it out without edge crossings.
In[1261]:=

g = IGTryUntil[IGPlanarQ]@RandomGraph[{10, 20}, VertexLabels "Name"]
Out[1261]=

1

2

3

4

5

6

7

8

9

10

278 | IGraph/M Documentation

In[1262]:=

IGLayoutPlanar[g]
Out[1262]=

1 2 34

5

6

7

8 9

10

IGLayoutPlanar produces a drawing based on the combinatorial embedding returned IGPlanarEmbedding. A

combinatorial embedding is a counter-clockwise ordering of the incident edges around each vertex.
In[1263]:=

emb = IGPlanarEmbedding[g]
Out[1263]=

1 {2, 5, 9, 4, 7}, 2 {1, 7, 3, 5}, 3 {2, 7, 10, 6}, 4 {1, 9}, 5 {2, 6, 1},

6 {5, 3, 7, 8, 9}, 7 {6, 10, 3, 2, 1, 9, 8}, 8 {7, 9, 6}, 9 {8, 7, 4, 1, 6}, 10 {7, 3}

The embedding can also be used to directly compute coordinates for a drawing.
In[1264]:=

IGEmbeddingToCoordinates[emb]
Out[1264]=

{{5, 1}, {6, 1}, {7, 1}, {3, 1}, {2, 5}, {0, 8}, {1, 0}, {1, 2}, {2, 2}, {8, 1}}

In[1265]:=

Graphg, VertexCoordinates %

Out[1265]=

1 2 34

5

6

7

8 9

10

IGLayoutTutte
In[1266]:=

? IGLayoutTutte

IGLayoutTutte [graph, options] lays out a 3-vertex-connected planar graph using the Tutte embedding.

The Tutte embedding can be computed for a 3-vertex-connected planar graph. The faces of such a graph are uniquely

IGraph/M Documentation | 279

defined. This embedding ensures that the coordinates of any vertex not on the outer face are the average of its neigh-
bour’s coordinates, thus it is also called barycentric embedding.

IGLayoutTutte supports weighted graphs, and uses the weights for computing barycentres.

The available options are:

◼"OuterFace" sets the planar graph face to use as the outer face for the layout. The vertices of the face can be given

in any order. Use IGFaces to obtain a list of faces.

By default, a largest face is chosen to be the outer one.
In[1267]:=

g = IGShorthand["1-2-3-1,4-5-6-4,1-4,2-5,3-6"]
Out[1267]=

1

2

3

4

5

6

In[1268]:=

IGLayoutTutte[g]
Out[1268]=

1

23

4

56

We can specify a different outer face manually.
In[1269]:=

IGLayoutTutte[g, "OuterFace" {5, 4, 6}]
Out[1269]=

12

3

45

6

280 | IGraph/M Documentation

For some graphs, the best result is achieved when the outer face is not chosen to be a largest one.
In[1270]:=

g = GraphData["TutteGraph"];

In[1271]:=

{IGLayoutTutte[g], IGLayoutTutte[g, "OuterFace" {2, 8, 9, 10, 7, 6, 5, 4, 3}]}
Out[1271]=

 ,

IGLayoutTutte requires a 3-vertex-connected planar input.
In[1272]:=

IGLayoutTutte[CompleteGraph[5]]

IGraphM: planarEmbedding: The graph is not planar.

IGLayoutTutte : The graph is not planar and a Tutte embedding cannot be computed. Vertex coordinates will not be set.

Out[1272]=

In[1273]:=

IGLayoutTutte[CycleGraph[5]]

IGLayoutTutte : The graph is not 3-vertex-connected and a Tutte embedding cannot be computed. Vertex coordinates will not be set.

Out[1273]=

IGLayoutTutte will take into account edge weights. For a weighted graph, the barycenter of neighbours is computed

with a weighting corresponding to the edge weights.

A disadvantage of the Tutte embedding is that the ratio of the shortest and longest edge it creates is often very large. This

IGraph/M Documentation | 281

can be partially remedied by first computing an unweighted Tutte embedding, then setting edge weights based on the

obtained edge lengths.
In[1274]:=

pg = IGLayoutTutte@GraphData"GreatRhombicosidodecahedralGraph"
Out[1274]=

In[1275]:=

IGLayoutTutte@

IGEdgeMapApplyEuclideanDistance, EdgeWeight IGEdgeVertexPropVertexCoordinates, pg

Out[1275]=

282 | IGraph/M Documentation

By applying a further power-transformation of the weight, we can fine-tune the layout.
In[1276]:=

Manipulate

IGLayoutTutte

IGEdgeMapEuclideanDistance @@ #^power &,

EdgeWeight IGEdgeVertexPropVertexCoordinates, pg,

VertexSize 1 / 2

,

{{power, 1}, 0.5, 3},

Initialization Needs"IGraphM`"

Out[1276]=

power

Geometrical computation and meshes

Geometrical meshes

IGMeshGraph
In[1277]:=

? IGMeshGraph

IGMeshGraph[mesh] converts the edges and vertices of a geometrical mesh to a weighted graph.

The available options are:

◼EdgeWeight sets either the explicit edge weights, or the mesh property to be used as edge weights. The default value

is MeshCellMeasure. Use None to obtain an unweighted graph.

IGraph/M Documentation | 283

The following example demonstrates finding a shortest path on a geometric mesh.
In[1278]:=

mesh = DiscretizeRegion

RegionDifference[Rectangle[{0, 0}, {3, 3}], Rectangle[{0, 1}, {2, 2}]], MaxCellMeasure 0.02

Out[1278]=

IGMeshGraph preserves the vertex coordinates, and uses edge lengths as edge weights by default.
In[1279]:=

g = IGMeshGraph[mesh]
Out[1279]=

Find the corners.
In[1280]:=

st = First /@ Through

MinimalBy, MaximalByVertexList[g], Norm@PropertyValue{g, #}, VertexCoordinates &

Out[1280]=

{48, 20}

284 | IGraph/M Documentation

Highlight the shortest path.
In[1281]:=

HighlightGraphg,

PathGraph@FindShortestPathg, First[st], Last[st],

Frame True, FrameTicks True

Out[1281]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Find a Hamiltonian path on a mesh.
In[1282]:=

g = IGMeshGraph@DiscretizeRegionDisk[], MaxCellMeasure 1 / 40;

HighlightGraphg, PathGraph@FindHamiltonianPath[g], GraphHighlightStyle "DehighlightHide"

Out[1283]=

IGraph/M Documentation | 285

Get a spikey as a graph.
In[1284]:=

IGMeshGraph@PolyhedronData"Spikey", "BoundaryMeshRegion"

Out[1284]=

IGMeshCellAdjacencyGraph and IGMeshCellAdjacencMatrix
In[1285]:=

? IGMeshCellAdjacencyGraph

IGMeshCellAdjacencyGraph[mesh, d] gives the connectivity structure of d-dimensional cells in mesh as a graph.
IGMeshCellAdjacencyGraph[mesh, d1, d2] gives the

connectivity structure of d1 and d2 dimensional cells in mesh as a bipartite graph.

In[1286]:=

? IGMeshCellAdjacencyMatrix

IGMeshCellAdjacencyMatrix[mesh, d] gives the adjacency matrix of d-dimensional cells in mesh.
IGMeshCellAdjacencyMatrix[mesh, d1, d2] gives the incidence matrix of d1- and d2-dimensional cells in mesh.

The available options for IGMeshCellAdjacencyGraph are:

◼VertexCoordinates Automatic will use the mesh cell centroids as vertex coordinates if the mesh is 2 or 3-
dimensional. The default is VertexCoordinates None, which does not compute any coordinates.

286 | IGraph/M Documentation

Compute the connectivity of mesh vertices (zero-dimensional cells).
In[1287]:=

mesh = DiscretizeRegionDisk[], MaxCellMeasure 0.1

Out[1287]=

In[1288]:=

IGMeshCellAdjacencyGraphmesh, 0, VertexCoordinates Automatic

Out[1288]=

Compute the connectivity of faces (two-dimensional cells).
In[1289]:=

IGMeshCellAdjacencyGraph[mesh, 2]
Out[1289]=

IGraph/M Documentation | 287

Create the graph of a Goldberg polyhedron.
In[1290]:=

IGMeshCellAdjacencyGraph

BoundaryDiscretizeRegionBall[], PrecisionGoal 1, MaxCellMeasure 0.5, 2,

VertexCoordinates Automatic

Out[1290]=

Compute the connectivity of faces and edges, and colour nodes based on whether they represent a face or an edge.
In[1291]:=

g = IGMeshCellAdjacencyGraph

mesh, 2, 1,

VertexSize 0.9, VertexStyle {EdgeForm[], {1, _} Red, {2, _} Black}, EdgeStyle Gray

Out[1291]=

This is a bipartite graph.
In[1292]:=

IGBipartiteQ[g]
Out[1292]=

True

288 | IGraph/M Documentation

The vertex names are the same as the mesh cell indices (see MeshCellIndex).
In[1293]:=

VertexList[g] // Short
Out[1293]//Short=

{{2, 1}, {2, 2}, {2, 3}, {2, 4}, {2, 5}, {2, 6},

204, {1, 133}, {1, 134}, {1, 135}, {1, 136}, {1, 137}, {1, 138}}

Colour the faces of the mesh.
In[1294]:=

SetProperty{mesh, {2, All}},

MeshCellStyle ColorData[100] /@ IGVertexColoring@IGMeshCellAdjacencyGraph[mesh, 2]

Out[1294]=

The edge-edge connectivity is identical to the line graph of the vertex-vertex connectivity.
In[1295]:=

IGIsomorphicQ

LineGraph@IGMeshCellAdjacencyGraph[mesh, 0], IGMeshCellAdjacencyGraph[mesh, 1]

Out[1295]=

True

Compute the adjacency matrix of the vertex-vertex connectivity.
In[1296]:=

mesh = DiscretizeRegionSphere[],

PrecisionGoal 1.5, MaxCellMeasure 1, ImageSize Small

Out[1296]=

IGraph/M Documentation | 289

In[1297]:=

MatrixPlot@IGMeshCellAdjacencyMatrix[mesh, 0]
Out[1297]=

1 10 20 30 42

1

10

20

30

42

1 10 20 30 42

1

10

20

30

42

Compute the adjacency matrix of the edge-face connectivity.
In[1298]:=

bm = IGMeshCellAdjacencyMatrix[mesh, 1, 2]
Out[1298]=

SparseArray
Specified elements: 240

Dimensions: {120, 80}

In[1299]:=

MatrixPlot[bm]
Out[1299]=

1 20 40 60 80

1

50

120

1 20 40 60 80

1

50

120

290 | IGraph/M Documentation

This is the (non-square) incidence matrix of a bipartite graph. The graph can be reconstructed using

IGBipartiteIncidenceGraph.
In[1300]:=

Graph3D@IGBipartiteIncidenceGraph[bm]
Out[1300]=

Paint a Hamiltonian path on triangulation using a gradient of colours.
In[1301]:=

mesh = DiscretizeRegionDisk[], MaxCellMeasure 1 / 50, MeshCellStyle {1 None};

path = FindHamiltonianPath@IGMeshCellAdjacencyGraph[mesh, 2];

In[1303]:=

MeshRegion

mesh,

MeshCellStyle MapIndexed#1 ColorData["Pastel"]First[#2] Length[path] &, path

Out[1303]=

IGraph/M Documentation | 291

IGLatticeMesh
In[1304]:=

? IGLatticeMesh

IGLatticeMesh[type] creates a mesh of the lattice of the specified type.
IGLatticeMesh[type, {m, n}] creates a lattice of n by m unit cells.
IGLatticeMesh[type, region] creates a lattice from the points that fall within region.
IGLatticeMesh[] gives a list of available lattice types.

IGLatticeMesh can generate meshes of various periodic tilings. IGMeshGraph and

IGMeshCellAdjacencyGraph can be used to convert these to graphs. The primary use case is the easy generation of
various lattice graphs.

IGLatticeMesh[] returns the list of available lattices. Let us explore them using a graphical interface.
In[1305]:=

ManipulateIGLatticeMesh[type], type, IGLatticeMesh[], Initialization Needs"IGraphM`"

Out[1305]=

type Square

IGraph/M knows about a subset of the tilings available in EntityClass["PeriodicTiling", All]. Use these

entities to obtain additional geometric information about the tilings.

Generate a kagome lattice consisting of 6 by 4 unit cells.
In[1306]:=

IGLatticeMesh"Trihexagonal", {6, 4}

Out[1306]=

292 | IGraph/M Documentation

Create a hexagonal graph of 4 by 3 cells. Notice that the nodes are labelled with consecutive integers along the translation

vectors of the lattice.
In[1307]:=

IGMeshGraph

IGLatticeMesh["Hexagonal", {4, 3}],

VertexShapeFunction "Name", PerformanceGoal "Quality"

Out[1307]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

This specific node labelling allows for the creation of convenient directed lattices.
In[1308]:=

DirectedGraph%, "Acyclic"
Out[1308]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Create a hexagonal mesh from points that fall within a rectangular region.
In[1309]:=

IGLatticeMesh["Hexagonal", Rectangle[{0, 0}, {5, 5}]]
Out[1309]=

IGraph/M Documentation | 293

Create a hexagonal mesh from points that fall within a hexagonal region.
In[1310]:=

IGLatticeMesh"Hexagonal", Polygon@CirclePoints[3, 6]

Out[1310]=

Create a triangular grid graph in the shape of a hexagon, as the face-adjacency graph of the above mesh.
In[1311]:=

IGMeshCellAdjacencyGraph%, 2, VertexCoordinates Automatic
Out[1311]=

Create a face adjacency graph of the Cairo pentagonal tiling, and display it along with its mesh.
In[1312]:=

mesh = IGLatticeMesh"CairoPentagonal", MeshCellStyle 1 Darker@Green, 2 LightGreen;

294 | IGraph/M Documentation

In[1313]:=

Show

mesh,

IGMeshCellAdjacencyGraphmesh, 2,

VertexCoordinates Automatic, GraphStyle "BasicBlack",

ImageSize Medium

Out[1313]=

Compute a colouring of a periodic tiling so that neighbouring cells have different colours.
In[1314]:=

colorMesh[mesh_] :=

SetPropertyMeshRegionmesh, MeshCellStyle 1 White, {2, All},

MeshCellStyle ColorData[8] /@ IGMinimumVertexColoring@IGMeshCellAdjacencyGraph[mesh, 2]

IGraph/M Documentation | 295

In[1315]:=

colorMesh@IGLatticeMesh"Rhombille", Rectangle[{0, 0}, {10, 10}], ImageSize Medium

Out[1315]=

In[1316]:=

colorMesh@IGLatticeMesh"PentagonType2", {6, 4}, ImageSize Medium
Out[1316]=

296 | IGraph/M Documentation

Explore the face-adjacency graphs of lattices. These correspond to the dual lattice.
In[1317]:=

Manipulate

IGMeshCellAdjacencyGraphIGLatticeMesh[type], 2, VertexCoordinates Automatic,

type, IGLatticeMesh[], Initialization Needs"IGraphM`"

Out[1317]=

type Square

Make a maze through the faces of a lattice. We start by finding a spanning tree of the face-edge incidence graph of the

lattice.
In[1318]:=

mesh = IGLatticeMesh"Square", Disk[{0, 0}, 9.5], MeshCellStyle {1 2 GrayLevel[0.9]};

t = IGRandomSpanningTree@IGMeshCellAdjacencyGraph[mesh, 2, 1];

The walls of the maze will be the leaves of this tree which are edges.
In[1320]:=

walls = CasesPickVertexList[t], VertexDegree[t], 1, {1, _};

We will remove two outer walls to serve as the

In[1321]:=

exits = SortBywalls, PropertyValue{mesh, #}, MeshCellCentroid.{1, 0.1} &〚{1, -1}〛;

IGraph/M Documentation | 297

Draw the maze.
In[1322]:=

MeshRegionmesh,

MeshCellStyle ThreadComplementwalls, exits DirectiveAbsoluteThickness[4], Black,

Epilog Text["⟶", #] & /@ PropertyValuemesh, exits, MeshCellCentroid

Out[1322]=

⟶

⟶

298 | IGraph/M Documentation

Create a Moiré pattern by superimposing two rotated hexagonal lattices.
In[1323]:=

m = IGLatticeMesh"Hexagonal", Polygon@CirclePoints[12., 6];

Manipulate

Show@Table

MeshRegion

TransformedRegionm, RotationTransform[angle],

MeshCellStyle 2 None, 1 AbsoluteThickness[1.5], PlotRange 13 {{-1, 1}, {-1, 1}}

,

{angle, {0, α}}

,

{{α, 0.15}, 0, 0.3},

Initialization Needs"IGraphM`"

Out[1324]=

α

Proximity graphs

Proximity graphs are connectivity structures of geometric points based on geometric criteria. IGraph/M implements

several proximity graphs for points in two-dimensional Euclidean space.

IGDelaunayGraph
In[1325]:=

? IGDelaunayGraph

IGDelaunayGraph[points] gives the Delaunay graph of the given points.

IGDelaunayGraph[points] creates computes the Delaunay graph of the given points in one, two or three dimen-
sions. It is equivalent to IGMeshGraph@DelaunayMesh[points], but it is faster and it supports collinear points in

2D and coplanar points in 3D.

IGraph/M Documentation | 299

IGDelaunayGraph works in 1D, 2D and 3D.
In[1326]:=

Table

IGDelaunayGraph@RandomPointBall@ConstantArray0, dim, 30,

dim, 1, 3

Out[1326]=

 , ,

IGDelaunayGraph works with collinear points in 2D ...
In[1327]:=

IGDelaunayGraph[{{0, 0}, {2, 1}, {8, 4}, {6, 3}}]
Out[1327]=

... or coplanar points in 3D.
In[1328]:=

IGDelaunayGraph[{{0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {1, 1, 0}}]
Out[1328]=

300 | IGraph/M Documentation

IGDelaunayGraph takes all the usual graph options.
In[1329]:=

IGDelaunayGraphRandomReal[1, {10, 2}], GraphStyle "DiagramGold"

Out[1329]=

1

2

3

4

5

6

7

8

9

10

When there is more than one valid Delaunay triangulation, only one is returned.
In[1330]:=

IGDelaunayGraph@CirclePoints[5]
Out[1330]=

Find and plot an Euclidean minimum spanning tree of a set of points in three dimensions.
In[1331]:=

pts = RandomPoint[Ball[], 100];

IGraph/M Documentation | 301

In[1332]:=

dg = IGDelaunayGraph[pts];

IGTakeSubgraphdg,

IGSpanningTree@

IGEdgeMapApplyEuclideanDistance, EdgeWeight IGEdgeVertexPropVertexCoordinates, dg

Out[1333]=

IGLuneBetaSkeleton
In[1334]:=

? IGLuneBetaSkeleton

IGLuneBetaSkeleton [points, beta] gives the lune-based beta skeleton of the given points.

The lune-based β skeleton connects two points A and B when the intersection of two disks (a lune) having A and B on its

boundary contains no other points.

For β ≤ 1, the lune is defined by disks of radius AB / (2β).

A B

β 0.5

A B

β 0.8

A B

β 1

For β ≥ 1, the lune is defined by disks of radius β AB /2.

302 | IGraph/M Documentation

A B

β 1

A B

β 1.5

A B

β 2

A B

β 4

For β ≥ 1, the definition generalizes to higher dimensions too. IGLuneBetaSkeleton supports 2D and 3D point sets.

For β ≥ 1, the β skeleton is a subgraph of the Delaunay graph, thus its edges do not cross. For β < 2, it contains the

Euclidean minimum spanning tree, thus it is connected. For β > 2, it is typically disconnected. For β = 2, it may be discon-
nected in special degenerate cases when three neighbouring points form an equilateral triangle.

The implementation of β skeleton computation is efficient only for β ≥ 1.

β skeletons can be used to reconstruct a shape from a set of points.
In[1335]:=

points = {{2.21, 3.83}, {2.5, 3.59}, {2.9, 3.49}, {3.33, 3.48}, {3.79, 3.55}, {4.27, 3.63},

{4.74, 3.65}, {5.25, 3.7}, {5.66, 3.65}, {5.98, 3.58}, {6.25, 3.47}, {6.43, 3.23}, {6.47, 2.86},

{6.35, 2.39}, {6.19, 2.02}, {5.98, 1.77}, {5.8, 1.57}, {5.51, 1.31}, {5.32, 0.94}, {5.19, 0.59},

{5., 0.42}, {4.83, 0.31}, {4.62, 0.28}, {4.5, 0.37}, {4.54, 0.51}, {4.7, 0.58}, {4.82, 0.68},

{4.87, 0.91}, {4.87, 1.17}, {4.9, 1.6}, {4.91, 1.81}, {4.7, 1.7}, {4.47, 1.67}, {4.2, 1.7},

{3.89, 1.72}, {3.55, 1.84}, {3.53, 1.61}, {3.52, 1.33}, {3.51, 0.95}, {3.51, 0.48},

{3.4, 0.25}, {3.11, 0.21}, {3.02, 0.34}, {3.17, 0.5}, {3.16, 0.63}, {3.07, 0.94}, {3., 1.27},

{2.93, 1.48}, {2.81, 1.61}, {2.6, 1.4}, {2.37, 1.29}, {2.11, 1.1}, {1.83, 0.99}, {1.66, 0.7},

{1.52, 0.46}, {1.33, 0.53}, {1.37, 0.76}, {1.47, 1.01}, {1.7, 1.3}, {1.91, 1.55}, {2.1, 1.73},

{2.29, 1.92}, {2.54, 1.78}, {1.97, 2.17}, {1.76, 2.5}, {1.6, 2.74}, {1.36, 2.98}, {1.29, 2.92},

{1.11, 2.88}, {0.87, 2.97}, {0.95, 3.16}, {0.95, 3.45}, {1.09, 3.78}, {1.31, 3.92},

{1.46, 4.01}, {1.22, 4.11}, {1.09, 4.31}, {1.09, 4.39}, {1.3, 4.34}, {1.49, 4.23},

{1.56, 4.07}, {1.95, 4.01}, {0.98, 3.91}, {0.88, 4.07}, {0.86, 4.26}, {1.04, 4.17},

{5.99, 1.32}, {6.21, 1.08}, {6.52, 0.85}, {6.53, 0.61}, {6.53, 0.41}, {6.46, 0.26},

{6.63, 0.16}, {6.84, 0.25}, {6.88, 0.47}, {6.89, 0.81}, {6.86, 1.12}, {6.69, 1.35},

{6.56, 1.65}, {6.55, 1.94}, {6.6, 2.4}, {6.61, 3.39}, {6.77, 3.72}, {6.81, 4.18}, {6.76, 4.6},

{6.7, 5.07}, {6.74, 5.51}, {6.99, 5.63}, {7.3, 5.71}, {7.41, 5.92}, {7.17, 6.11}, {6.74, 6.11},

{6.34, 5.86}, {6.17, 5.46}, {6.08, 4.98}, {6.15, 4.57}, {6.25, 4.19}, {6.21, 3.77}};

IGraph/M Documentation | 303

In[1336]:=

IGLuneBetaSkeletonpoints, #, PlotLabel # & /@ {0.8, 1, 2, 5}

Out[1336]=

0.8

,

1

,

2

,

5

IGLuneBetaSkeleton works in 3D for β ≥ 1.
In[1337]:=

IGLuneBetaSkeletonRandomPoint[Ball[], 20], 1.5

Out[1337]=

In[1338]:=

IGLuneBetaSkeletonRandomPoint[Ball[], 20], 0.5

IGraphM: Beta skeleton computation is only supported in 2 dimensions for beta < 1 or circle-based beta skeletons.

Out[1338]=

$Failed

304 | IGraph/M Documentation

Create a β-skeleton interactively. Point can be dragged around. To create or delete points, use -click on macOS, -
click on Windows or --click on Linux.

In[1339]:=

DynamicModulept = CirclePoints[0.5, 3], beta = 1.0,

GridList /@

RowText@HoldForm[β], Spacer[10], SliderDynamic[beta], {1 / 2, 4},

Spacer[10], Text@Dynamic@NumberForm[beta, {3, 3}],

LocatorPane

Dynamic[pt],

Dynamic@IGLuneBetaSkeletonpt, beta,

PlotRange {{-1, 1}, {-1, 1}},

PlotRangePadding 0,

Frame True,

FrameTicks Automatic,

GridLines Automatic,

GraphStyle "BasicBlack",

ImageSize Medium, VertexShape None, VertexSize 0

,

LocatorAutoCreate True

,

Initialization Needs"IGraphM`"

Out[1339]=

β 1.000

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

IGCircleBetaSkeleton
In[1340]:=

? IGCircleBetaSkeleton

IGCircleBetaSkeleton [points, beta] gives the circle-based beta skeleton of the given points.

IGraph/M Documentation | 305

The circle-based β skeleton connects two points A and B if there is no other point C so that the angle ∡ A C B is less sharp

the threshold

θ =
sin-1 1

β
 β ≥ 1

π -sin-1(β) β ≤ 1

This is equivalent to no point C being contained in the intersection or unions of the disks illustrated below.

A B

β 0.5

A B

β 0.8

A B

β 1

A B

β 1.5

A B

β 2

For β ≤ 1, the circle based and lune based beta skeletons coincide. For β > 1, the circle-based beta skeleton is a subgraph

of the lune-based one.

Compute the circle-based β skeleton of a random point set.
In[1341]:=

IGCircleBetaSkeletonRandomVariateNormalDistribution[0, 1], {100, 2}, 1.2

Out[1341]=

IGRelativeNeighborhoodGraph
In[1342]:=

? IGRelativeNeighborhoodGraph

IGRelativeNeighborhoodGraph[points] gives the relative neighbourhood graph of the given points.

The relative neighbourhood graph is constructed from a set of points in space. Two points A and B are connected if and

only if there is no other point C so that A C < AB and BC < AB, with the inequialities being strict.

Most authors define the neighbourhood graph to coincide with a β-skeleton for β = 2. In IGraph/M, there is a subtle

difference: the β = 2 skeleton connects points A and B when there is no point C so that A C ≤ AB and BC ≤ AB. Therefore,
three points forming an equilateral triangle are connected in the relative neighborhood graph, but disconnected in the

β = 2 skeleton.

306 | IGraph/M Documentation

Compute the relative neighbourhood graph of a random set of points.
In[1343]:=

g = IGRelativeNeighborhoodGraphRandomReal[1, {1000, 2}],

GraphStyle "VibrantColor", VertexSize {"Scaled", 0.005}

Out[1343]=

Assign edge lengths as weights ...
In[1344]:=

g = IGDistanceWeighted[g];

... and compute their distribution.
In[1345]:=

HistogramIGEdgePropEdgeWeight[g]

Out[1345]=

0.02 0.04 0.06 0.08
0

50

100

150

200

Plot the relative neighbourhood graph of African capitals.
In[1346]:=

capitals = CountryData"Africa", "CapitalCity";

edges = IGIndexEdgeList@IGRelativeNeighborhoodGraph@EntityValuecapitals, "Coordinates";

IGraph/M Documentation | 307

In[1348]:=

GeoGraphicsRed, Thick, Linecapitals〚#〛 & /@ edges, PointSize[0.01], Pointcapitals

Out[1348]=

When the point set contain equilateral triangles, the relative neighbourhood graph may not coincide with the β = 2

skeleton.
In[1349]:=

pts = MeshCoordinates@IGLatticeMesh"Triangular";

In[1350]:=

IGRelativeNeighborhoodGraph[pts], IGLuneBetaSkeleton[pts, 2]

Out[1350]=

 ,

IGGabrielGraph
In[1351]:=

? IGGabrielGraph

IGGabrielGraph[points] gives the Gabriel graph of the given points.

The Gabriel graph is constructed from a set of points in space. Two points A and B are connected if and only if no other
point is contained in the disk of which AB is a diameter.

308 | IGraph/M Documentation

The Gabriel graph coincides with a β-skeleton for β = 1.
In[1352]:=

pts = RandomPointDisk[], 100;

g = IGGabrielGraph[pts]
Out[1353]=

The Gabriel graph is a subgraph of the Delaunay graph.
In[1354]:=

HighlightGraph[IGMeshGraph@DelaunayMesh[pts], g]
Out[1354]=

Convert the Gabriel graph to a MeshRegion object by finding its faces, and removing the outer face. Here we use the

heuristic that for a graph generated from a random point set, the face with the most vertices is likely to be the outer face.
In[1355]:=

faces = IGFaces@IGCoordinatesToEmbedding[g];

faces = Deletefaces, OrderingLength /@ faces, -1;

IGraph/M Documentation | 309

In[1357]:=

MeshRegionpts, Polygonfaces

Out[1357]=

Compute a Gabriel graph in 3D.
In[1358]:=

IGGabrielGraph@RandomVariateMultinormalDistribution@IdentityMatrix[3], 100

Out[1358]=

IGBetaWeightedGabrielGraph
In[1359]:=

? IGBetaWeightedGabrielGraph

IGBetaWeightedGabrielGraph[points] gives a Gabriel graph of points with edge weights
representing β values where the corresponding edge would disappear from a lune-based β-skeleton.

Experimental: This is experimental functionality that may change in the future.

IGBetaWeightedGabrielGraph[points] produces a Gabriel graph in which edge weights represent threshold β

310 | IGraph/M Documentation

values for lune-based β-skeletons. Each edge is present in β-skeletons having a β parameter smaller than the threshold

stored in its weight.

Available options:

◼"BetaCutoff" cutoff only computes threshold β values up cutoff. Larger thresholds will be returned as

Infinity. This option is intended to increase performance: the lower the cutoff, the faster the computation. The

default value is Infinity, i.e. no cutoff.

Colour edges by their inverse threshold β values:
In[1360]:=

pts = RandomPointDisk[], 60;

In[1361]:=

g = IGBetaWeightedGabrielGraphpts, GraphStyle "ThickEdge" //

IGEdgeMapColorData"Rainbow"[1 / #] &, EdgeStyle IGEdgePropEdgeWeight
Out[1361]=

Plot the edge count of a lune-based β-skeleton of the same points as a function of β:
In[1362]:=

thresholds = IGEdgePropEdgeWeight[g];

ListLogLogPlot[

Transpose[{Reverse@Sort[thresholds], Range@Length[thresholds]}],

AxesLabel {"β", "edge count"}

]

Out[1363]=

1 10 100 1000
β

10

50

100

edge count

IGraph/M Documentation | 311

Show a percolation curve corresponding to edge removal in order of reverse threshold β:
In[1364]:=

ListPlot@IGPercolationCurve@Reverse@SortByEdgeList[g], PropertyValue{g, #}, EdgeWeight &

Out[1364]=

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Weighted graphs
These functions perform basic operations on edge-weighted graphs without discarding edge weights. They are not based

on the igraph C library.

IGWeightedAdjacencyGraph

IGWeightedAdjacencyGraph constructs an edge-weighted graph from a weighted adjacency matrix. By default, 0

elements in the matrix are taken to indicate a lack of connection. An alternative value may be specified to indicate the

lack of connections.

IGWeightedAdjacencyGraph takes the same options as WeightedAjdacencyGraph.

In[1365]:=

? IGWeightedAdjacencyGraph

IGWeightedAdjacencyGraph[matrix] creates a graph from a weighted adjacency matrix, taking 0 to mean unconnected.
IGWeightedAdjacencyGraph[vertices, matrix] uses vertices as the vertex names.
IGWeightedAdjacencyGraph[matrix, z] creates a graph

from a weighted adjacency matrix, taking the value z to mean unconnected.
IGWeightedAdjacencyGraph[vertices, matrix, z] uses vertices as the vertex names.

In[1366]:=

IGWeightedAdjacencyGraph
0 2 0
2 0 3
0 3 0

, GraphStyle "DiagramGold", EdgeLabels "EdgeWeight"

Out[1366]=

2 31 2 3

312 | IGraph/M Documentation

The built-in WeightedAdjacencyGraph uses Infinity to indicate the lack of connection. This makes it inconsistent

with WeightedAdjacencyMatrix, which uses 0. The purpose of IGWeightedAdjacencyGraph is to be able to

easily interoperate with WeightedAdjacencyMatrix, and to easily cycle a weighted graph through an adjacency

matrix representation.
In[1367]:=

wg = RandomGraph{8, 15}, EdgeWeight {_ RandomReal[]}

Out[1367]=

In[1368]:=

WeightedAdjacencyMatrix[wg] // MatrixForm
Out[1368]//MatrixForm=

0. 0. 0.657029 0. 0.619472 0. 0.77406 0.669673
0. 0. 0. 0. 0.657961 0. 0. 0.

0.657029 0. 0. 0.454061 0.149099 0.640649 0.326244 0.
0. 0. 0.454061 0. 0. 0. 0.565047 0.31078

0.619472 0.657961 0.149099 0. 0. 0.0491909 0.536172 0.268517
0. 0. 0.640649 0. 0.0491909 0. 0. 0.431543

0.77406 0. 0.326244 0.565047 0.536172 0. 0. 0.
0.669673 0. 0. 0.31078 0.268517 0.431543 0. 0.

In[1369]:=

IGWeightedAdjacencyGraph@WeightedAdjacencyMatrix[wg],

WeightedAdjacencyGraph@WeightedAdjacencyMatrix[wg]

Out[1369]=

 ,

In[1370]:=

PropertyValue%, EdgeWeight
Out[1370]=

$Failed

IGWeightedAdjacencyGraphg, Infinity is equivalent to WeightedAdjacencyGraph[g].

In[1371]:=

IGWeightedAdjacencyGraph
0 2 0
2 0 3
0 3 0

, Infinity, WeightedAdjacencyGraph
0 2 0
2 0 3
0 3 0

Out[1371]=

 ,

IGraph/M Documentation | 313

Use DirectedEdges True to force creating a directed graph even from a symmetric matrix.

In[1372]:=

IGWeightedAdjacencyGraph
0 2 0
2 0 3
0 3 0

, DirectedEdges True

Out[1372]=

When the input matrix is not symmetric, DirectedEdges False will cause the below-diagonal part of the matrix to

be ignored.
In[1373]:=

IGWeightedAdjacencyGraph
0 2 0
4 0 0
0 3 0

, DirectedEdges False,

GraphStyle "DiagramGold", EdgeLabels "EdgeWeight"

Out[1373]=

2 12

3

IGWeightedAdjacencyMatrix
In[1374]:=

? IGWeightedAdjacencyMatrix

IGWeightedAdjacencyMatrix[graph] gives the adjacency matrix of the edge weights of graph.
IGWeightedAdjacencyMatrix[graph, z] gives the adjacency

matrix of the edge weights of graph, using the value z to represent absent connections.

IGWeightedAdjacencyMatrix is equivalent to the built-in WeightedAdjacencyMatrix with the difference that

it allows specifying the value to use for representing absent connections.

By default, absent connections are represented with 0. This does not allow for distinguishing between absent connec-
tions and connections with weight 0.

In[1375]:=

g = Graph{1 2, 2 3}, EdgeWeight {2, 0}

Out[1375]=

In[1376]:=

IGWeightedAdjacencyMatrix[g] // MatrixForm
Out[1376]//MatrixForm=

0 2 0
2 0 0
0 0 0

In[1377]:=

IGWeightedAdjacencyMatrixg, Infinity // MatrixForm

Out[1377]//MatrixForm=

∞ 2 ∞

2 ∞ 0
∞ 0 ∞

314 | IGraph/M Documentation

IGEdgeWeightedQ
In[1378]:=

? IGEdgeWeightedQ

IGEdgeWeightedQ[graph] tests if graph is an edge-weighted graph.

Unlike WeightedGraphQ, IGEdgeWeightedQ does not return True for vertex-weighted graphs that have no edge

weights.
In[1379]:=

g = Graph{1 2}, VertexWeight {1.2, 2.3};

In[1380]:=

IGEdgeWeightedQ[g]
Out[1380]=

False

In[1381]:=

IGEdgeWeightedQSetPropertyg, EdgeWeight {1}
Out[1381]=

True

IGVertexWeightedQ
In[1382]:=

? IGVertexWeightedQ

IGVertexWeightedQ[graph] tests if graph is a vertex-weighted graph.

Unlike WeightedGraphQ, IGVertexWeightedQ does not return True for edge-weighted graphs that have no vertex

weights.
In[1383]:=

g = Graph{1 2}, EdgeWeight {3.1};

In[1384]:=

IGVertexWeightedQ[g]
Out[1384]=

False

In[1385]:=

IGVertexWeightedQSetPropertyg, VertexWeight {2, 1}
Out[1385]=

True

IGVertexStrength

IGVertexStrength returns the strength of each vertex, i.e. the total edge weight of edges adjacent to it.

In[1386]:=

? IGVertex*Strength

IGraphM`

IGVertexInStrength IGVertexOutStrength IGVertexStrength

In[1387]:=

g = ExampleData"NetworkGraph", "EurovisionVotes";

IGraph/M Documentation | 315

In[1388]:=

IGVertexStrength[g]
Out[1388]=

{25, 12, 40, 17, 25, 21, 45, 60, 16, 50, 38, 6, 62, 51, 40, 38, 11, 63, 74, 15, 44, 29, 45,

48, 27, 29, 48, 24, 6, 18, 30, 63, 27, 27, 49, 83, 2, 43, 6, 28, 43, 57, 25, 91, 55, 40}

In- and out-strength can be calculated separately for directed graphs.
In[1389]:=

{IGVertexInStrength[g], IGVertexOutStrength[g]}
Out[1389]=

{{11, 0, 30, 3, 19, 7, 20, 38, 4, 24, 13, 0, 40, 25, 20, 12, 5, 37, 52, 3, 22, 5,

21, 26, 7, 9, 22, 12, 0, 10, 7, 39, 5, 6, 27, 61, 0, 31, 0, 4, 17, 31, 5, 65, 39, 14},

{14, 12, 10, 14, 6, 14, 25, 22, 12, 26, 25, 6, 22, 26, 20, 26, 6, 26, 22, 12, 22, 24, 24,

22, 20, 20, 26, 12, 6, 8, 23, 24, 22, 21, 22, 22, 2, 12, 6, 24, 26, 26, 20, 26, 16, 26}}

In[1390]:=

IGVertexInStrength[g] + IGVertexOutStrength[g] IGVertexStrength[g]
Out[1390]=

True

Scale vertices by strength:
In[1391]:=

IGVertexMap{"Scaled", 0.1 #} &, VertexSize Normalize[IGVertexStrength[#], Max] &, g
Out[1391]=

IGUnweighted

IGUnweighted[g] returns a version of the graph g with edge weights removed.

In[1392]:=

? IGUnweighted

IGUnweighted[graph] returns an unweighted version of an edge-weighted graph, while preserving other graph properties.

This function is useful for computing graph properties such as betweenness centrality without taking weights into

account.
In[1393]:=

g = ExampleData"NetworkGraph", "EastAfricaEmbassyAttacks";

In[1394]:=

IGBetweenness[g]
Out[1394]=

{2., 2., 1., 0., 8., 0., 8.5, 23.5, 0.5, 14.5, 7., 3.5, 71.5, 3., 7., 0., 0., 30.}

316 | IGraph/M Documentation

In[1395]:=

IGBetweenness@IGUnweighted[g]
Out[1395]=

{3.49167, 0.416667, 3.75, 0., 3.48333, 1.79167, 11.9167,

32.3417, 7.38333, 5.9, 6.65, 1.36667, 20.275, 8.45, 23.4833, 0., 0., 2.3}

IGDistanceWeighted

IGDistanceWeighted[g] returns a weighted version of the graph g, setting the weights of edges to the distance

between their endpoints. The distances are computed based on the VertexCoordinates property.
In[1396]:=

? IGDistanceWeighted

IGDistanceWeighted [graph] sets the weight of each edge to be the geometrical distance between its endpoints.

The available options are:

◼DistanceFunction sets the function used to compute distances. The default is EuclideanDistance.

Create a Delaunay graph.
In[1397]:=

pts = RandomPointDisk[], 100;

g = IGDelaunayGraphpts, GraphStyle "BasicBlack", VertexSize {"Scaled", 0.03}
Out[1398]=

IGDelaunayGraph returns unweighted graphs.
In[1399]:=

IGEdgeWeightedQ[g]
Out[1399]=

False

IGraph/M Documentation | 317

Set edge weights based on the geometrical distances between the edge endpoints.
In[1400]:=

wg = IGDistanceWeighted[g]
Out[1400]=

In[1401]:=

IGEdgeWeightedQ[wg]
Out[1401]=

True

Edge weights are taken into account by many graph analysis functions.
In[1402]:=

IGVertexMapColorData"Rainbow", VertexStyle Rescale@*IGBetweenness /@ {wg, g}

Out[1402]=

 ,

Compute the mean edge length.
In[1403]:=

MeanIGEdgePropEdgeWeight[wg]

Out[1403]=

0.218076

Use Manhattan distances instead of Euclidean distances.
In[1404]:=

IGDistanceWeightedg, DistanceFunction ManhattanDistance // IGEdgePropEdgeWeight // Mean
Out[1404]=

0.278232

IGDistanceWeighted[g] is effectively equivalent to the following IGEdgeMap construct, but faster for several

specific distance functions:
In[1405]:=

wg1 = IGEdgeMapApplyEuclideanDistance, EdgeWeight IGEdgeVertexPropVertexCoordinates, g; //

RepeatedTiming
Out[1405]=

{0.000985902, Null}

318 | IGraph/M Documentation

In[1406]:=

wg2 = IGDistanceWeighted[g]; // RepeatedTiming
Out[1406]=

{0.000324609, Null}

In[1407]:=

IGEdgePropEdgeWeight[wg1] IGEdgePropEdgeWeight[wg2]

Out[1407]=

True

IGWeightedSimpleGraph
In[1408]:=

? IGWeightedSimpleGraph

IGWeightedSimpleGraph[graph] combines parallel edges by adding their
weights. If graph is not weighted, the resulting weights will be the edge multiplicities of graph.

IGWeightedSimpleGraph[graph, comb] applies the function comb
to the weights of parallel edges to compute a newweight. The default combiner is Plus.

IGWeightedSimpleGraph creates an edge-weighted graph by combining the weights of parallel edges. The default

combiner function is Plus. If the input is an unweighted graph, the resulting weights will be the edge multiplicities of the

input graph.

Available options:

◼SelfLoops False will discard self-loops. The default is to keep them.

Convert edge multiplicities to weights.
In[1409]:=

g = IGGrowingGame[30, 3]
Out[1409]=

In[1410]:=

IGWeightedSimpleGraph[g] // IGEdgeMapAbsoluteThickness, EdgeStyle IGEdgePropEdgeWeight

Out[1410]=

IGraph/M Documentation | 319

Discard self-loops and apply additional graph options.
In[1411]:=

IGWeightedSimpleGraphg, SelfLoops False, PlotTheme "NeonColor"

Out[1411]=

In[1412]:=

IGEdgeWeightedQ[%]
Out[1412]=

True

Combine edge weights by adding, multiplying or averaging, as controlled by the second argument of
IGWeightedSimpleGraph.

In[1413]:=

MatrixForm@WeightedAdjacencyMatrix@IGWeightedSimpleGraph

Graph{1 2, 1 2, 2 3}, EdgeWeight {2, 3, 4},

#

 & /@ Plus, Times, Mean[{##}] &

Out[1413]=

0 5 0
5 0 4
0 4 0

,
0 6 0
6 0 4
0 4 0

,

0 5
2

0
5
2

0 4

0 4 0

IGWeightedUndirectedGraph
In[1414]:=

? IGWeightedUndirectedGraph

IGWeightedUndirectedGraph[graph] converts an edge-weighted
directed graph to an undirected one. The weights of reciprocal edges added up.

IGWeightedUndirectedGraph[graph, comb] applies the function comb to the
weights of reciprocal edges to compute the weight of the corresponding undirected edge.

IGWeightedUndirectedGraph[graph, None] converts each directed edge
to an undirected one without combining their weights. The result may be amultigraph.

320 | IGraph/M Documentation

IGWeightedUndirectedGraph works like the built-in UndirectedGraph, but preserves edge weights. The

weights of reciprocal edges will be combined with the given combiner function. By default, Plus is used, i.e. they are

added up.
In[1415]:=

IGWeightedUndirectedGraph

Graph{1 2, 2 1, 2 3}, EdgeWeight {3, 4, 5}

 // WeightedAdjacencyMatrix // MatrixForm

Out[1415]//MatrixForm=

0 7 0
7 0 5
0 5 0

Average weights instead of adding them.
In[1416]:=

IGWeightedUndirectedGraph

Graph{1 2, 2 1, 2 3}, EdgeWeight {3, 4, 5},

Mean[{##}] &

 // WeightedAdjacencyMatrix // MatrixForm

Out[1416]//MatrixForm=

0 7
2

0
7
2

0 5

0 5 0

This function is not meant to be used with multigraphs. If the input is a multigraph, weights of parallel edges will be

combined with the same combiner function that is used for reciprocal edges. This may lead to unexpected results, thus a

warning is issued.
In[1417]:=

IGWeightedUndirectedGraph

Graph{1 2, 1 2, 2 1, 2 3}, EdgeWeight {3, 4, 4, 5},

Mean[{##}] &

 // WeightedAdjacencyMatrix // MatrixForm

IGWeightedUndirectedGraph : The input is a multigraph. Weights of parallel edges will be combined with the same combiner function as used

for reciprocal edges.

Out[1417]//MatrixForm=

0 11
3

0
11
3

0 5

0 5 0

IGraph/M Documentation | 321

Use IGWeightedSimpleGraph to combine parallel edges before converting the graph to undirected.

In[1418]:=

IGWeightedUndirectedGraph

IGWeightedSimpleGraph

Graph{1 2, 1 2, 2 1, 2 3}, EdgeWeight {3, 4, 4, 5},

Mean[{##}] &

,

Mean[{##}] &

 // WeightedAdjacencyMatrix // MatrixForm

Out[1418]//MatrixForm=

0 15
4

0
15
4

0 5

0 5 0

If None is used for the combiner, reciprocal edges are not combined. A weighted multigraph is created instead.
In[1419]:=

IGWeightedUndirectedGraph

Graph{1 2, 2 1, 2 3}, EdgeWeight {3, 4, 5},

None

Out[1419]=

In[1420]:=

IGEdgeWeightedQ[%]
Out[1420]=

True

IGWeightedVertexDelete
In[1421]:=

? IGWeightedVertexDelete

IGWeightedVertexDelete [graph, vertex] deletes the given vertex while preserving edge weights.
IGWeightedVertexDelete [graph, {v1, v2,…}] deletes the given set of vertices while preserving edge weights.

In Mathematica 11.3 and earlier, the built-in VertexDelete does not handle edge weights correctly, and may some-
times produce Graph expressions with a broken internal structure. The purpose of IGWeightedVertexDelete is to

provide a fast and reliable way to remove a vertex while preserving edge weights. Only edge weights are retained. All
other properties are discarded.

In[1422]:=

g = Graph{1 2, 2 3}, EdgeWeight {4, 5};

In[1423]:=

IGEdgePropEdgeWeight[g]

Out[1423]=

{4, 5}

In[1424]:=

IGEdgePropEdgeWeight@IGWeightedVertexDelete[g, 3]

Out[1424]=

{4}

322 | IGraph/M Documentation

Possible issues:

To delete a single vertex whose name is a list, it is necessary to use the syntax IGWeightedVertexDelete[g, {v}]

to avoid ambiguity.

Graphs with list vertices commonly appear in the output of several functions, such as NearestNeighborGraph,

RelationGraph, IGDisjointUnion or IGMeshCellAdjacencyGraph.
In[1425]:=

g = NearestNeighborGraph[RandomInteger[4, {10, 2}], VertexLabels "Name"] //

IGEdgeMapApplyEuclideanDistance, EdgeWeight EdgeList
Out[1425]=

{2, 2}

{0, 1} {2, 1}

{2, 0}

{4, 2}

{2, 4}

{1, 3}{0, 3}

In[1426]:=

v = First@VertexList[g]
Out[1426]=

{2, 2}

In this case, the single-vertex convenience syntax will not work.
In[1427]:=

IGWeightedVertexDelete[g, v]

IGraphM: The vertex 2 does not exist in the graph.

Out[1427]=

$Failed

Wrap the vertex in a list instead.
In[1428]:=

IGWeightedVertexDelete[g, {v}]
Out[1428]=

IGWeightedSubgraph
In[1429]:=

? IGWeightedSubgraph

IGWeightedSubgraph[graph, {v1, v2,…}] returns the subgraph induced by the given vertices while preserving edge weights.

In Mathematica 11.3 and earlier, the built-in Subgraph function does not preserve edge weights.

IGWeightedSubgraph preserves edge weights, but discards all other properties.

IGraph/M Documentation | 323

To retain not only edge weights, but also other properties, use IGTakeSubgraph. IGWeightedSubgraph offers

much better performance than IGTakeSubgraph at the cost of discarding other properties.

In[1430]:=

g = Graph{1 2, 2 3, 3 4, 4 1},

EdgeWeight {1, 2, 3, 4}, EdgeLabels "EdgeWeight", VertexLabels "Name"

Out[1430]=

1 2

34

1

2

3

4

In[1431]:=

IGWeightedSubgraphg, {2, 3, 4}, EdgeLabels "EdgeWeight", VertexLabels "Name"

Out[1431]=

2 3
2 3 4

Degree sequences

Graphicality

A sequence of integers is called graphical if there is an undirected graph that has them as its degree sequence. Some

authors apply the term graphical only when the degrees can be realized by a simple graph. Here we use it in a more

general sense, as IGraph/M is able to perform the test also for the cases of multigraphs with loops, loop-free multigraphs

and simple graph with at most one self-loop per vertex. These are controlled by the SelfLoops and MultiEdges

options. The concept of graphicality generalizes to pairs of in- and out-degree sequences of directed graphs as well.

IGGraphicalQ
In[1432]:=

? IGGraphicalQ

IGGraphicalQ[degrees] tests if degrees is the degree sequence of any simple undirected graph.
IGGraphicalQ[indegrees, outdegrees] tests if

indegrees with outdegrees is the degree sequence of any simple directed graph.
IGGraphicalQ[degrees, SelfLoops -> True] tests if degrees is

the degree sequence of any undirected graph with at most one self-loop per vertex.
IGGraphicalQ[degrees, MultiEdges -> True] tests if degrees is the degree sequence of any undirected loop-free multigraph.

In the undirected case, IGGraphicalQ uses the Erdős–Gallai theorem to check if the degree sequence is realized by any

simple graph. For loopy multigraphs, it is sufficient to check that the sum of degrees is even. If self-loops are disallowed,
there is the additional condition that ∑i di ≥ dmax. If at most one self-loop is allowed per vertex, but no multi-edges, a

modification of the Erdős-Gallai conditions due to Cairns and Mendan are used.

324 | IGraph/M Documentation

In the directed case, IGGraphicalQ uses the Fulkerson–Chen–Antsee theorem with Berger’s refinement. For loopy

multi-digraphs, it is sufficient to check that the sum of in-degrees equals the sum of out-degrees. If self-loops are disal-
lowed, there is the additional condition that the sum of in-degrees (or, alternatively, the sum of out-degrees) is not
smaller than the maximum total degree. If at most one self-loop is allowed per vertex, but no multi-edges, the problem

becomes equivalent to realizability as a simple bipartite graph, and the Gale–Ryser theorem can be used (see

IGBigraphicalQ).

To actually construct a realization, use the IGRealizeDegreeSequence function. To sample random realizations, use

IGDegreeSequenceGame.

The allowed options are:

◼SelfLoops True checks if the degree sequence has realizations that potentially contain self-loops.

◼MultiEdges True checks if the degree sequence has realizations that potentially contain more than one

connection between pairs of vertices.

Check if a degree sequence is graphical …
In[1433]:=

IGGraphicalQ[{4, 3, 3, 2, 1, 1}]
Out[1433]=

True

… then construct a realization as a simple graph:
In[1434]:=

IGRealizeDegreeSequence[{4, 3, 3, 2, 1, 1}]
Out[1434]=

Check the same for a pair of in- and out-degree sequences, the construct a realization as a simple directed graph:
In[1435]:=

IGGraphicalQ[{0, 2, 0}, {1, 0, 1}], IGGraphicalQ[{1, 0, 1}, {0, 2, 0}]

Out[1435]=

{True, True}

In[1436]:=

IGRealizeDegreeSequence[{0, 2, 0}, {1, 0, 1}], IGRealizeDegreeSequence[{1, 0, 1}, {0, 2, 0}]

Out[1436]=

 ,

IGraph/M Documentation | 325

The degree sequence (1, 2, 3) has no realization as a simple graph, but it can be realized either as a simple loopy graph,
, or as a loop-free multigraph, .

In[1437]:=

IGGraphicalQ[{1, 2, 3}],

IGGraphicalQ{1, 2, 3}, SelfLoops True,

IGGraphicalQ{1, 2, 3}, MultiEdges True
Out[1437]=

{False, True, True}

(4, 1, 1) is realizable as a loopy simple graph, but not as a loop-free multigraph.
In[1438]:=

IGGraphicalQ{4, 1, 1}, SelfLoops True,

IGGraphicalQ{4, 1, 1}, MultiEdges True

Out[1438]=

{True, False}

Any graph with the degree sequence (6, 2, 2) must have both self-loops and multi-edges.
In[1439]:=

TableForm

Outer

IGGraphicalQ{6, 2, 2}, SelfLoops #1, MultiEdges #2 &,

{False, True}, {False, True}

, TableHeadings "self-loops", "multi-edges", "self-loops", "multi-edges"
Out[1439]//TableForm=

self-loops multi-edges
self-loops False False
multi-edges False True

The following pair of in- and out-degree sequences can be realized as a directed graph with at most one self-loop per
vertex, but not as a loop-free multigraph:

In[1440]:=

IGGraphicalQ{1, 0, 2}, {0, 1, 2}, SelfLoops True,

IGGraphicalQ{1, 0, 2}, {0, 1, 2}, MultiEdges True

Out[1440]=

{True, False}

Create a random graphical scale-free degree sequence and construct a corresponding graph:
In[1441]:=

ds = IGTryUntilIGGraphicalQ@RandomVariateZipfDistribution[1.1], 100
Out[1441]=

{2, 14, 2, 1, 1, 2, 7, 1, 1, 1, 1, 1, 1, 11, 1, 1, 2, 1, 1, 3, 5, 1, 1, 1, 2, 9, 1, 1, 2, 7, 1, 1, 1, 1, 1,

5, 1, 1, 2, 2, 1, 1, 41, 2, 1, 3, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 4, 39, 1,

1, 4, 2, 4, 1, 1, 1, 3, 1, 1, 1, 1, 1, 14, 2, 2, 1, 1, 1, 1, 2, 10, 1, 1, 1, 4, 4, 1, 14, 2, 21, 7}

326 | IGraph/M Documentation

In[1442]:=

IGRealizeDegreeSequence[ds]
Out[1442]=

References

◼ P. Erdős and T. Gallai, Gráfok Előírt Fokú Pontokkal, Matematikai Lapok 11, 264 (1960).
https://users.renyi.hu/~p_erdos/1961-05.pdf

◼G. Cairns and S. Mendan, Degree Sequences for Graphs with Loops, 1 (2013). https://arxiv.org/abs/1303.2145v1

◼ Z. Király, Recognizing Graphic Degree Sequences and Generating All Realizations, No. TR–2011–11, Egerváry Research

Group, Eötvös Loránd University, 2012. http://bolyai.cs.elte.hu/egres/tr/egres-11-11.pdf

◼B. Cloteaux, Is This for Real? Fast Graphicality Testing, Computing in Science & Engineering 17, 6 (2015).
https://dx.doi.org/10.1109/MCSE.2015.125

◼D. R. Fulkerson, Zero-One Matrices with Zero Trace, Pacific Journal of Mathematics 10, 3 (1960).
https://doi.org/10.2140/pjm.1960.10.831

◼W. K. Chen, On the Realization of a (p, s)-digraph with Prescribed Degrees, Journal of the Franklin Institute 281, 5

(1966). https://doi.org/10.1016/0016-0032(66)90301-2

◼ R. P. Anstee, Properties of a Class of (0, 1)-matrices Covering a Given Matrix, Canadian Journal of Mathematics 34, 2

(1982). https://doi.org/10.4153/cjm-1982-029-3

◼ A. Berger, A Note on the Characterization of Digraphic Sequences, Discrete Mathematics 314, 1 (2014).
https://dx.doi.org/10.1016/j.disc.2013.09.010

◼ Sz. Horvát and C. D. Modes, Connectivity matters: Construction and exact random sampling of connected graphs

(2020). https://arxiv.org/abs/2009.03747

IGBigraphicalQ
In[1443]:=

? IGBigraphicalQ

IGBigraphicalQ[degrees1, degrees2] tests if (degrees1, degrees2) is the degree sequence of any bipartite simple graph.
IGBigraphicalQ[degrees1, degrees2, MultiEdges -> True]

tests if (degrees1, degrees2) is the degree sequence of any bipartite multigraph.

IGBigraphicalQ[degrees1, degrees2] checks if there is a bipartite graph which has degrees1 and

degrees2 as the vertex degrees in the two partitions. Such a pair of degree sequences is called bigraphical.

If multi-edges are allowed in the graph, it is sufficient to check that the two degree sequences sum to the same value. If
only simple graphs are allowed, IGBigraphicalQ uses the Gale–Ryser theorem with Berger’s refinement.

The available options are:

◼MultiEdges True allows for multi-edges in the graph.

IGraph/M Documentation | 327

https://users.renyi.hu/~p_erdos/1961-05.pdf
https://arxiv.org/abs/1303.2145v1
http://bolyai.cs.elte.hu/egres/tr/egres-11-11.pdf
https://dx.doi.org/10.1109/MCSE.2015.125
https://doi.org/10.2140/pjm.1960.10.831
https://doi.org/10.1016/0016-0032(66)90301-2
https://doi.org/10.4153/cjm-1982-029-3
https://dx.doi.org/10.1016/j.disc.2013.09.010
https://arxiv.org/abs/2009.03747

In[1444]:=

IGBigraphicalQ[{4, 3, 1, 2, 4}, {2, 4, 4, 4}]
Out[1444]=

True

The following pair of degree sequences is bigraphical only if multi-edges are permitted:
In[1445]:=

IGBigraphicalQ{2, 2}, {4}, MultiEdges False, IGBigraphicalQ{2, 2}, {4}, MultiEdges True
Out[1445]=

{False, True}

References

◼H. J. Ryser, Combinatorial Properties of Matrices of Zeros and Ones, Can. J. Math. 9, 371 (1957).
https://dx.doi.org/10.4153/cjm-1957-044-3

◼D. Gale, A theorem on flows in networks, Pacific J. Math. 7, 1073 (1957). https://dx.doi.org/10.2140/pjm.1957.7.1073

◼ A. Berger, A Note on the Characterization of Digraphic Sequences, Discrete Mathematics 314, 1 (2014).
https://dx.doi.org/10.1016/j.disc.2013.09.010

Potential connectedness

IGPotentiallyConnectedQ
In[1446]:=

? IGPotentiallyConnectedQ

IGPotentiallyConnectedQ [degrees] tests if degrees is the degree sequence of some connected graph.

IGPotentiallyConnectedQ checks if a degree sequence has a realization as a connected graph. The condition is

that the degree sequence (d1,…, dn) satisfy
1
2
∑i di ≥ n - 1 and di > 0 for all i. Additionally, IGPotentiallyConnectedQ

requires that the sum of degrees be odd.

Check the potential connectivity of a degree sequence, then construct a corresponding connected graph:
In[1447]:=

IGPotentiallyConnectedQ[{3, 2, 2, 1, 1, 1}]
Out[1447]=

True

In[1448]:=

IGRealizeDegreeSequence{3, 2, 2, 1, 1, 1}, Method "SmallestFirst"

Out[1448]=

328 | IGraph/M Documentation

https://dx.doi.org/10.4153/cjm-1957-044-3
https://dx.doi.org/10.2140/pjm.1957.7.1073
https://dx.doi.org/10.1016/j.disc.2013.09.010

The empty degree sequence is considered non-potentially-connected:
In[1449]:=

IGPotentiallyConnectedQ[{}]
Out[1449]=

False

The length-1 degree sequence (0) is considered connected:
In[1450]:=

IGPotentiallyConnectedQ[{0}]
Out[1450]=

True

IGPotentiallyConnectedQ returns False for odd-sum sequences, as no graph can have them as its degrees:
In[1451]:=

IGPotentiallyConnectedQ[{3, 3, 3}]
Out[1451]=

False

Generate a random potentially connected degree sequence and construct a corresponding connected non-simple graph:
In[1452]:=

IGRealizeDegreeSequence

IGTryUntilIGPotentiallyConnectedQ@RandomVariateZipfDistribution[1], 100,

MultiEdges True, SelfLoops True, Method "SmallestFirst"

Out[1452]=

Constructing graphs

See the Graph creation section for a detailed description of these functions.
In[1453]:=

? IGRealizeDegreeSequence

IGRealizeDegreeSequence [degrees] gives an undirected graph having the
given degree sequence. Available Method options: {"SmallestFirst", "LargestFirst", "Index"}.

IGRealizeDegreeSequence [indegrees, outdegrees] gives a directed graph having the given out- and in-degree sequences.

In[1454]:=

? IGDegreeSequenceGame

IGDegreeSequenceGame[degrees] generates an undirected random graph with the given degree sequence. Available
Method options: {"ConfigurationModel", "ConfigurationModelSimple", "FastSimple", "VigerLatapy"}.

IGDegreeSequenceGame[indegrees, outdegrees]
generates a directed random graph with the given in- and out-degree sequences.

IGraph/M Documentation | 329

Threshold graphs

IGSplitQ
In[1455]:=

? IGSplitQ

IGSplitQ[graph] tests if graph is a split graph.
IGSplitQ[degrees] tests if degrees is the degree sequence of a split graph.

IGSplitQ recognizes split graphs, or their degree sequences. Splits graphs are the graphs which can be partitioned into

a clique and an independent set. IGSplitQ ignores self-loops and multi-edges.

Split graph can be recognized solely based on their degree sequence. Let d1 ≥ d2 ≥⋯ ≥ dn be the non-increasingly ordered

degree sequence, and m the largest index i such that di ≥ i - 1. Then the graph is split if and only if

i=1

m di =m(m-1)+
i=m+1

n di.

When applied to a list of integers, IGSplitQ only checks this condition, but does not verify graphicality.

Test if a graph is split:
In[1456]:=

g = ;

In[1457]:=

IGSplitQ[g]
Out[1457]=

True

Highlight its clique and independent vertex set parts:
In[1458]:=

cl = First@IGLargestCliques[g];

HighlightGraphg, Subgraph[g, #] & /@ cl, ComplementVertexList[g], cl

Out[1459]=

IGSplitQ can be used directly on degree sequences:
In[1460]:=

IGSplitQ@VertexDegree[g]
Out[1460]=

True

330 | IGraph/M Documentation

The following graph is not split:
In[1461]:=

IGSplitQ

Out[1461]=

False

IGThresholdQ
In[1462]:=

? IGThresholdQ

IGThresholdQ[graph] tests if graph is a threshold graph.
IGThresholdQ[degrees] tests if degrees form a threshold degree sequence.

IGThresholdQ recognizes threshold graphs, or their degree sequences. IGThresholdQ ignores self-loops and multi-
edges.

Check if the following is a threshold graph:
In[1463]:=

g = ;

In[1464]:=

IGThresholdQ[g]
Out[1464]=

True

Threshold graphs are also split graphs:
In[1465]:=

IGSplitQ[g]
Out[1465]=

True

IGThresholdQ can be used directly on degree sequences:
In[1466]:=

IGThresholdQ@VertexDegree[g]
Out[1466]=

True

IGraph/M Documentation | 331

A threshold graph can be built by repeatedly adding either an isolated vertex, or a dominating vertex, i.e. a vertex that
connects to all previous ones. The following function takes a specification in which . and - represent isolated and

dominating vertices, respectively, and builds the corresponding graph.
In[1467]:=

thresholdGraphspec_String :=

With{steps = Characters[spec]},

GraphRange@Length[steps],

Join @@ Table

Ifstepsi === "-", UndirectedEdgei, # & /@ Rangei - 1, {},

i, Length[steps]

In[1468]:=

g = thresholdGraph["...--.-"]
Out[1468]=

In[1469]:=

IGThresholdQ[g]
Out[1469]=

True

Degree sequences of threshold graphs have precisely one realization. Therefore, the same graph can be reconstructed

from its degree sequence:
In[1470]:=

IGRealizeDegreeSequence@VertexDegree[g]
Out[1470]=

Property handling and transformations
IGraph/M includes a set of functions that make it easy to extract vertex and edge properties (attributes), transform them

with an arbitrary function, set their values based on the output of various functions such as IGBetweenness, or to copy

values from one graph property into another.

To simplify these tasks, IGraph/M’s property handling framework takes a somewhat more restrictive view of graph

properties than Mathematica’s built-ins. Edge and vertex properties are strictly distinguished, and it is assumed that when

332 | IGraph/M Documentation

a property exists for one vertex (or edge), it also exists for all others. When this is not the case, the value

Missing["Nonexistent"] is used.

Let us use the following example network to demonstrate the basic usage of these functions.
In[1471]:=

g = GraphExampleData"NetworkGraph", "EastAfricaEmbassyAttacks", ImageSize Medium
Out[1471]=

Osama
Salim

Ali

Abouhlaima

Kherchtou

Fawwaz

Abdullah

Hage

Odeh

Owhali

Fazul

Azzam

Atwah

Fahad

Fadhil

Khalfan

Ghailani
Awad

In[1472]:=

? IGVertexPropertyList

IGVertexPropertyList [graph] gives the list of available vertex properties in graph.

In[1473]:=

? IGEdgePropertyList

IGEdgePropertyList[graph] gives the list of available edge properties in graph.

Find what custom edge and vertex properties this graph has.
In[1474]:=

IGVertexPropertyList[g]
Out[1474]=

{FullName, Group, VertexCoordinates, VertexLabels,

VertexShape, VertexShapeFunction, VertexSize, VertexStyle}

In[1475]:=

IGEdgePropertyList[g]
Out[1475]=

{EdgeShapeFunction, EdgeStyle, EdgeWeight}

In[1476]:=

? IGVertexProp

IGVertexProp[prop] is an operator that extracts the values of vertex property prop from a graph.

In[1477]:=

? IGEdgeProp

IGEdgeProp[prop] is an operator that extracts the values of edge property prop from a graph.

In[1478]:=

? IGEdgeVertexProp

IGEdgeVertexProp [prop] is an operator that extracts the vertex property prop for the vertex pair corresponding to each edge.

IGraph/M Documentation | 333

Extract the "Group" property of each node:
In[1479]:=

IGVertexProp["Group"][g]
Out[1479]=

{Planners, Planners, Planners, Planners, Planners, Planners, Planners, Planners,

Nairobi Cell, Nairobi Cell, Nairobi Cell, Nairobi Cell, Planners, Dar es Salaam Cell,

Dar es Salaam Cell, Dar es Salaam Cell, Dar es Salaam Cell, Dar es Salaam Cell}

Extract the weight of each edge:
In[1480]:=

IGEdgePropEdgeWeight[g]

Out[1480]=

{0.52, 0.36, 0.48, 0.48, 0.36, 0.36, 0.36, 0.36, 0.36, 0.16, 0.72, 0.16, 0.36, 0.36, 0.36, 0.36, 0.48,

0.36, 0.36, 0.48, 0.48, 0.48, 0.48, 0.48, 0.64, 0.48, 0.48, 0.48, 0.64, 0.48, 0.48, 0.48, 0.64, 0.28,

0.12, 0.48, 0.12, 0.12, 0.12, 0.12, 0.12, 0.64, 0.64, 0.48, 0.12, 0.64, 0.48, 0.48, 0.12, 0.12, 0.12}

In[1481]:=

? IGVertexMap

IGVertexMap[f, prop, graph]maps the function f to the vertex property list of property prop in graph.
IGVertexMap[f, prop -> pf, graph]maps the function f to

the values returned by pf[graph] and assigns the result to the vertex property prop.
IGVertexMap[f, prop -> {pf1, pf2,…}, graph] threads f over

{pf1[graph], pf2[graph],…} and assigns the result to the vertex property prop.
IGVertexMap[f, spec] represents an operator form of IGVertexMap that can be applied to a graph.

In[1482]:=

? IGEdgeMap

IGEdgeMap[f, prop, graph]maps the function f to the edge property list of property prop in graph.
IGEdgeMap[f, prop -> pf, graph]maps the function f to

the values returned by pf[graph] and assigns the result to the edge property prop.
IGEdgeMap[f, prop -> {pf1, pf2,…}, graph] threads f over

{pf1[graph], pf2[graph],…} and assigns the result to the edge property prop.
IGEdgeMap[f, spec] represents an operator form of IGEdgeMap that can be applied to a graph.

Show the value of the "FullName" custom property in tooltips.
In[1483]:=

IGVertexMap# &, Tooltip IGVertexProp["FullName"], g
Out[1483]=

Osama
Salim

Ali

Abouhlaima

Kherchtou

Fawwaz

Abdullah

Hage

Odeh

Owhali

Fazul

Azzam

Atwah

Fahad

Fadhil

Khalfan

Ghailani
Awad

334 | IGraph/M Documentation

Styling graphs according to stored or computed properties
In[1484]:=

g = GraphExampleData"NetworkGraph", "EastAfricaEmbassyAttacks", ImageSize Medium;

Scale vertices according to degree:
In[1485]:=

IGVertexMap0.1 # &, VertexSize VertexDegree, g
Out[1485]=

Osama
Salim

Ali

Abouhlaima

Kherchtou

Fawwaz

Abdullah

Hage

Odeh

Owhali

Fazul

Azzam

Atwah

Fahad

Fadhil

Khalfan

GhailaniAwad

Let us colour edges by betweenness and set their thickness based on weight. Betweenness calculations treat high weight
values as a “long distance”, thus we invert EdgeWeight before calculating the betweenness. To be able to use the

original weights, we save them into a new "weight" property.

IGraph/M Documentation | 335

Calls to IGEdgeMap or IGVertexMap can be conveniently chained together using their operator form.

In[1486]:=

g //

IGEdgeMap (* save original weight in "weight" property *)

Identity, "weight" IGEdgePropEdgeWeight

/*

IGEdgeMap (* invert edge weights for betweenness calculation *)

1 / # &, EdgeWeight

/*

IGEdgeMap (* thickness by original weight, colour by betweenness based on inverse weight *)

DirectiveAbsoluteThickness[9 #1], ColorData"Rainbow"[#2] &,

EdgeStyle IGEdgeProp"weight", Rescale@*EdgeBetweennessCentrality

Out[1486]=

Osama
Salim

Ali

Abouhlaima

Kherchtou

Fawwaz

Abdullah

Hage

Odeh

Owhali

Fazul

Azzam

Atwah

Fahad

Fadhil

Khalfan

Ghailani
Awad

336 | IGraph/M Documentation

Label a graph with a circular layout:
In[1487]:=

IGVertexMap

Function{name, coord},

Placed

name,

{.5, .5}, -0.8 Normalize[coord] + {.5, .5},

Rotate#, ModArcTan @@ coord, Pi, -Pi 2 &

,

VertexLabels VertexList, IGVertexPropVertexCoordinates,

IGLayoutCircleExampleData"NetworkGraph", "FamilyGathering"

Out[1487]=

Elisabeth

Jam
es

An
na

Jo
hn

D
or
ot
hyLinda

M
ichael

Larry

Carol

Nancy

Dav
id

No
ra

Ju
lia

B
en

O
scar

Felicia

Arlene

Rudy

Use edge weights as edge labels, and line up labels with edges:
In[1488]:=

g = RandomGraph{10, 20}, EdgeWeight RandomReal[1, 20];

In[1489]:=

(* returns edge angle for each edge *)

edgeAngle[g_] :=

Withasc = AssociationThreadVertexList[g], GraphEmbedding[g],

ArcTan @@ (asc[#1] - asc[#2]) & @@@ EdgeList[g]

IGraph/M Documentation | 337

In[1490]:=

IGLayoutDavidsonHarel[g] //

IGEdgeMap

Functionweight, angle,

Placed

StyleNumberFormweight, 2, Background White,

Center, Rotate#, Modangle, Pi, -Pi 2 &

,

EdgeLabels IGEdgeProp@EdgeWeight, edgeAngle

Out[1490]=

0.
5

0.31

0.73

0.84

0.
57

0.48

0.74

0.85

0.87

0.86
0.1
5

0.26

0.
66

0.16

0.86

1.

0.
78

0.39

0.28

0.
87

Colour vertices based on their graph distance form a given vertex:
In[1491]:=

g = ExampleData"NetworkGraph", "DolphinSocialNetwork";

In[1492]:=

Graphg, EdgeStyle LightGray, VertexSize 1, ImageSize Medium //

IGVertexMap

ColorData"Rainbow", VertexStyle Rescale@First@IGDistanceMatrix[#, {"Feather"}] &

Out[1492]=

Colour the vertices of an annotated bipartite disease-gene graph based on whether they represent diseases or genes.
In[1493]:=

g = ExampleData"NetworkGraph", "BipartiteDiseasomeNetwork";

There are two types of vertices:
In[1494]:=

IGVertexProp["Type"][g] // Union
Out[1494]=

{Disease, Entrez}

338 | IGraph/M Documentation

In[1495]:=

IGVertexMap

"Disease" Red, "Entrez" Blue,

VertexStyle IGVertexProp["Type"],

g

Out[1495]=

Compute the edge weights of a spatially embedded graph as lengths, then colour edges based on this value.
In[1496]:=

g = IGMeshCellAdjacencyGraph

IGLatticeMesh"Pinwheel", Disk[{0, 0}, 4], 2,

VertexCoordinates Automatic,

GraphStyle "ThickEdge", EdgeStyle Opacity[2 / 3]

Out[1496]=

IGraph/M Documentation | 339

In[1497]:=

g //

IGEdgeMapApplyEuclideanDistance, EdgeWeight IGEdgeVertexPropVertexCoordinates/*

IGEdgeMapColorData"DarkRainbow", EdgeStyle Rescale@*IGEdgePropEdgeWeight

Out[1497]=

Style social network by gender
In[1498]:=

g = ExampleData"NetworkGraph", "FamilyGathering"
Out[1498]=

Elisabeth

James

Anna

John
Dorothy

Linda

Michael

Larry

Carol

Nancy

David

Nora

Julia

Ben

Oscar

Felicia

Arlene

Rudy

In[1499]:=

g = IGVertexMap

Interpreter"GivenName"[#]["Gender"] &,

"gender" VertexList,

g

;

340 | IGraph/M Documentation

In[1500]:=

IGVertexMap

 male GENDER , female GENDER ,

VertexStyle IGVertexProp["gender"],

Graphg, EdgeStyle Gray, VertexSize Large

Out[1500]=

Elisabeth

James

Anna

John
Dorothy

Linda

Michael

Larry

Carol

Nancy

David

Nora

Julia

Ben

Oscar
Felicia

Arlene

Rudy

Transform vertex coordinates

Transform the vertex coordinates of a graph to obtain a more pleasing layout:
In[1501]:=

g = GraphGraphData"Apollonian", 5, "EdgeList", GraphLayout "PlanarEmbedding"

Out[1501]=

IGraph/M Documentation | 341

In[1502]:=

IGVertexMapAffineTransform1,
1

2
, 0,

3

2
, VertexCoordinates, g

Out[1502]=

Project coordinates from the sphere to the plane using stereographic projection:
In[1503]:=

g = Graph3DGraphData"DodecahedralGraph", "EdgeList"
Out[1503]=

In[1504]:=

project =

CoordinateTransform

"Standard" "Stereographic", {"Sphere", 1},

Rest@CoordinateTransform"Cartesian" "Spherical", #

 &;

342 | IGraph/M Documentation

In[1505]:=

Graph

IGVertexMapproject, VertexCoordinates Standardize@*IGVertexPropVertexCoordinates, g,

GraphLayout "Dimension" 2

Out[1505]=

Copy one property into another

Let us import this network:
In[1506]:=

g = Import"http://networkdata.ics.uci.edu/data/lesmis/lesmis.gml", ImageSize Large

Out[1506]=

Myriel

Napoleon

MlleBaptistine

MmeMagloire

CountessDeLo

Geborand

Champtercier

Cravatte
Count

OldMan

Labarre

Valjean

Marguerite

MmeDeR

Isabeau

Gervais

Tholomyes

Listolier
FameuilBlacheville

Favourite

Dahlia

Zephine

Fantine

MmeThenardier

Thenardier

Cosette

Javert

Fauchelevent

Bamatabois

Perpetue

Simplice

Scaufflaire

Woman1

Judge

Champmathieu
Brevet

Chenildieu
Cochepaille

Pontmercy

Boulatruelle

Eponine

Anzelma

Woman2
MotherInnocent

Gribier

Jondrette

MmeBurgon

Gavroche

Gillenormand

Magnon

MlleGillenormand

MmePontmercy

MlleVaubois

LtGillenormand

Marius

BaronessT

Mabeuf

Enjolras

Combeferre

Prouvaire

Feuilly
Courfeyrac

Bahorel
Bossuet

Joly

Grantaire

MotherPlutarch

Gueulemer
BabetClaquesous

Montparnasse

Toussaint

Child1

Child2

Brujon
MmeHucheloup

IGraph/M Documentation | 343

According to the description, this should be a weighted graph:
In[1507]:=

Import"http://networkdata.ics.uci.edu/data/lesmis/lesmis.txt"

Out[1507]=

The file lesmis.gml contains the weighted network of coappearances of

characters in Victor Hugo's novel "Les Miserables". Nodes represent

characters as indicated by the labels and edges connect any pair of

characters that appear in the same chapter of the book. The values on the

edges are the number of such coappearances. The data on coappearances were

taken from D. E. Knuth, The Stanford GraphBase: A Platform for

Combinatorial Computing, Addison-Wesley, Reading, MA (1993).

But as imported by Mathematica, it is not edge-weighted:
In[1508]:=

IGEdgeWeightedQ[g]
Out[1508]=

False

This is because the edge weights are imported into the "value" property instead of the standard EdgeWeight:

In[1509]:=

IGEdgePropertyList[g]
Out[1509]=

{value, EdgeShapeFunction, EdgeStyle}

Copy the values of one property into another:
In[1510]:=

g = IGEdgeMap# &, EdgeWeight IGEdgeProp["value"], g;

Now we have a weighted graph:
In[1511]:=

IGEdgeWeightedQ[g]
Out[1511]=

True

Matrix functions

IGKirchhoffMatrix
In[1512]:=

? IGKirchhoffMatrix

IGKirchhoffMatrix[graph] gives the Kirchhoffmatrix, also known as Laplacian matrix of graph.
IGKirchhoffMatrix[graph, "In"]will place the in-degrees on the diagonal instead of the out-degrees.

The Kirchhoff matrix of a graph is defined as

Ki,j =
-ai,j, where ai,j is the number of i j connections i ≠ j

-∑k≠i Kk,i i = j

In other words, non-diagonal entries are the negative of the adjacency matrix and diagonal entries are equal to the out-
degree. Rows sum up to zero.

344 | IGraph/M Documentation

The built-in KirchoffMatrix function uses the total degree on the diagonal even if the input graph is directed, making

it unsuitable for many of the usual operations done with Kirchhoff matrices.
In[1513]:=

g =

1

2

3

4

;

In[1514]:=

KirchhoffMatrix[g] // MatrixForm
Out[1514]//MatrixForm=

1 -1 0 0
0 3 -1 -1
0 0 1 0
0 0 0 1

By default, the diagonal contains the out-degrees, and rows sum to zero. This can also be requested explicitly using

IGKirchhoffMatrix[g, "Out"].

In[1515]:=

IGKirchhoffMatrix[g] // MatrixForm
Out[1515]//MatrixForm=

1 -1 0 0
0 2 -1 -1
0 0 0 0
0 0 0 0

IGKirchhoffMatrix[g, "In"] will place the in-degrees on the diagonal, so that the columns will sum to zero.

In[1516]:=

IGKirchhoffMatrix[g, "In"] // MatrixForm
Out[1516]//MatrixForm=

0 -1 0 0
0 1 -1 -1
0 0 1 0
0 0 0 1

Unlike the built-in KirchhoffMatrix, IGKirchoffMatrix takes into account edge multiplicities.
In[1517]:=

KirchhoffMatrix
1 2

3

 // MatrixForm

Out[1517]//MatrixForm=

2 -1 -1
-1 2 -1
-1 -1 2

In[1518]:=

IGKirchhoffMatrix
1 2

3

 // MatrixForm

Out[1518]//MatrixForm=

3 -2 -1
-2 3 -1
-1 -1 2

IGraph/M Documentation | 345

IGJointDegreeMatrix
In[1519]:=

? IGJointDegreeMatrix

IGJointDegreeMatrix[graph] gives the joint degree matrix of graph. Element
i,j of the matrix contains the number of edges connecting degree-i and degree-j vertices.

IGJointDegreeMatrix[graph, d] gives the d by d joint degree matrix of graph, up to degree d.
IGJointDegreeMatrix[graph, {dOut, dIn}] gives the dOut by dIn joint degree matrix of graph.

Entry Jij of the joint degree matrix J is the number of edges connecting a degree i and a degree j vertex. For a directed

graph, Jij is the number of edges from a vertex with out-degree i to a vertex with in-degree j.

For an empty (i.e. edgeless) graph, {{}} is returned.

The available options are:

◼Normalized True will normalize the matrix by the sum of entries for directed graphs. For undirected graphs, the

sum of upper triangular entries is used. Thus a matrix entry Jij can be interpreted as the probability that a randomly

selected edge will connect vertices of degrees i and j.
In[1520]:=

g = IGShorthand["1-2-3-4-2"]
Out[1520]=

1 2

3

4

In[1521]:=

jdm = IGJointDegreeMatrix[g];

MatrixFormjdm, TableHeadings Automatic
Out[1522]//MatrixForm=

1 2 3
1 0 0 1
2 0 1 2
3 1 2 0

The degree distribution (excluding zero-degree nodes) can be recovered as follows. The result array contains the number
of nodes having each degree.

In[1523]:=

Totaljdm + Diagonaljdm

Range@Max@VertexDegree[g]
Out[1523]=

{1, 2, 1}

Compute the degree distribution directly, for comparison.
In[1524]:=

Rest@BinCounts@VertexDegree[g]
Out[1524]=

{1, 2, 1}

Some other systems use a slightly different definition of the joint degree matrix for undirected graphs: the number of
degree i vertices connecting to degree j vertices. Compared to the definition used here, this definition counts edges

running between nodes of the same degree twice. To obtain this type of joint degree matrix, simply add the diagonal to

346 | IGraph/M Documentation

the original matrix.
In[1525]:=

MatrixFormjdm + DiagonalMatrix@Diagonaljdm, TableHeadings Automatic

Out[1525]//MatrixForm=

1 2 3
1 0 0 1
2 0 2 2
3 1 2 0

Multi-edges are supported.
In[1526]:=

MatrixFormIGJointDegreeMatrix[], TableHeadings Automatic

Out[1526]//MatrixForm=

1 2 3
1 0 0 1
2 0 0 2
3 1 2 0

Self-loops are also supported. Note that IGJointDegreeMatrix counts loop edges twice when computing the vertex

degree, just like VertexDegree. Thus the vertices of the below graph have degrees 1 and 3.

In[1527]:=

MatrixFormIGJointDegreeMatrix , TableHeadings Automatic

Out[1527]//MatrixForm=

1 2 3
1 0 0 1
2 0 0 0
3 1 0 1

In[1528]:=

IGJointDegreeMatrix@ExampleData[{"NetworkGraph", "ZacharyKarateClub"}] // MatrixPlot
Out[1528]=

1 5 10 17

1

5

10

17

1 5 10 17

1

5

10

17

The joint degree matrix of a directed graph is not necessarily square.
In[1529]:=

IGBarabasiAlbertGame[15, 3] // IGJointDegreeMatrix // MatrixPlot
Out[1529]=

1 2 3 4 5 6 7 8 9 10

1

2

3

1 2 3 4 5 6 7 8 9 10

1

2

3

The second argument allows for obtaining joint degree matrices of a predictable size. This makes it convenient to operate

IGraph/M Documentation | 347

together multiple joint degree matrices.
In[1530]:=

MatrixPlot@Mean@Table

IGJointDegreeMatrixRandomGraph[{10, 20}], 9, Normalized True,

{1000}

Out[1530]=

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

IGAdjacencyMatrixPlot
In[1531]:=

? IGAdjacencyMatrixPlot

IGAdjacencyMatrixPlot[graph] plots the adjacency matrix of graph.
IGAdjacencyMatrixPlot[graph, {v1, v2,…}] plots the adjacency

matrix of the subgraph induced by the given vertices, using the specified vertex ordering.

IGAdjacencyMatrixPlot is based on MatrixPlot, but optimized for the convenient display of labelled adjacency

matrices.

Available options:

◼EdgeWeight sets the edge property to use for matrix elements. By default edge weights are used for weighted graphs.
Set EdgeWeight None to visualize the unweighted adjacency matrix even for a weighted graph.

◼"UnconnectedColor" sets the colour to use to represent non-existent connections.

◼VertexLabels controls how to label the matrix’s columns and rows. Possible values:

◼ "Index" uses row and column numbers. These are identical to vertex indices when the full adjacency matrix is plotted,
but not when a partial matrix is plotted or if the vertices are re-ordered.

◼ "Name" uses vertex names.

◼ Automatic uses indices for large graphs and names for small ones. Use a list of rules to set different names for each

vertex.

◼"RotateColumnLabels" False will not rotate columns labels.

◼Mesh controls the drawing of grid lines. By default, a grid is drawn only for small graphs. Use Mesh All to force

drawing the grid.

348 | IGraph/M Documentation

IGAdjacencyMatrixPlot also accepts all standard MatrixPlot options.
In[1532]:=

g = ExampleData"NetworkGraph", "Friendship"

Out[1532]=

Anna

Rose

Nora

Ben

Larry

Carol
Rudy

Linda

James

In[1533]:=

IGAdjacencyMatrixPlot[g]
Out[1533]=

A
nn
a

R
os
e

N
or
a

B
en

La
rr
y

C
ar
ol

R
ud
y

Li
nd
a

Ja
m
es

Anna

Rose

Nora

Ben

Larry

Carol

Rudy

Linda

James

A
nn
a

R
os
e

N
or
a

B
en

La
rr
y

C
ar
ol

R
ud
y

Li
nd
a

Ja
m
es

Anna

Rose

Nora

Ben

Larry

Carol

Rudy

Linda

James

Reorder graph vertices before plotting.
In[1534]:=

IGAdjacencyMatrixPlotg, Sort@VertexList[g]

Out[1534]=

A
nn
a

B
en

C
ar
ol

Ja
m
es

La
rr
y

Li
nd
a

N
or
a

R
os
e

R
ud
y

Anna

Ben

Carol

James

Larry

Linda

Nora

Rose

Rudy

A
nn
a

B
en

C
ar
ol

Ja
m
es

La
rr
y

Li
nd
a

N
or
a

R
os
e

R
ud
y

Anna

Ben

Carol

James

Larry

Linda

Nora

Rose

Rudy

IGraph/M Documentation | 349

Plot a subgraph only.
In[1535]:=

IGAdjacencyMatrixPlot[g, {"Anna", "Ben", "Larry", "Carol"}]
Out[1535]=

A
nn
a

B
en

La
rr
y

C
ar
ol

Anna

Ben

Larry

Carol

A
nn
a

B
en

La
rr
y

C
ar
ol

Anna

Ben

Larry

Carol

Plot a weighted adjacency matrix.
In[1536]:=

g = ExampleData"NetworkGraph", "EastAfricaEmbassyAttacks";

IGAdjacencyMatrixPlotg, PlotLegends Automatic, ImageSize 300

Out[1537]=

O
sa
m
a

S
al
im A
li

A
bo
uh
la
im
a

K
he
rc
ht
ou

F
aw
w
az

A
bd
ul
la
h

H
ag
e

O
de
h

O
w
ha
li

F
az
ul

A
zz
am

A
tw
ah

F
ah
ad

F
ad
hi
l

K
ha
lfa
n

G
ha
ila
ni

A
w
ad

Osama
Salim
Ali

Abouhlaima
Kherchtou
Fawwaz
Abdullah

Hage
Odeh
Owhali
Fazul
Azzam
Atwah
Fahad
Fadhil
Khalfan
Ghailani
Awad

O
sa
m
a

S
al
im

A
li
A
bo
uh
la
im
a

K
he
rc
ht
ou

F
aw
w
az

A
bd
ul
la
h

H
ag
e

O
de
h

O
w
ha
li

F
az
ul

A
zz
am

A
tw
ah

F
ah
ad

F
ad
hi
l

K
ha
lfa
n

G
ha
ila
ni

A
w
ad

Osama
Salim
Ali
Abouhlaima
Kherchtou
Fawwaz
Abdullah
Hage
Odeh
Owhali
Fazul
Azzam
Atwah
Fahad
Fadhil
Khalfan
Ghailani
Awad

0

0.18

0.36

0.54

0.72

Use a different edge property than weights for the matrix entries.
In[1538]:=

g2 = g // IGEdgeMap1 / # &, EdgeWeight //

IGEdgeMap[# &, "Betweenness" IGEdgeBetweenness];

350 | IGraph/M Documentation

In[1539]:=

IGAdjacencyMatrixPlotg2, EdgeWeight "Betweenness", ImageSize 300

Out[1539]=
O
sa
m
a

S
al
im A
li

A
bo
uh
la
im
a

K
he
rc
ht
ou

F
aw
w
az

A
bd
ul
la
h

H
ag
e

O
de
h

O
w
ha
li

F
az
ul

A
zz
am

A
tw
ah

F
ah
ad

F
ad
hi
l

K
ha
lfa
n

G
ha
ila
ni

A
w
ad

Osama
Salim
Ali

Abouhlaima
Kherchtou
Fawwaz
Abdullah

Hage
Odeh
Owhali
Fazul
Azzam
Atwah
Fahad
Fadhil
Khalfan
Ghailani
Awad

O
sa
m
a

S
al
im

A
li
A
bo
uh
la
im
a

K
he
rc
ht
ou

F
aw
w
az

A
bd
ul
la
h

H
ag
e

O
de
h

O
w
ha
li

F
az
ul

A
zz
am

A
tw
ah

F
ah
ad

F
ad
hi
l

K
ha
lfa
n

G
ha
ila
ni

A
w
ad

Osama
Salim
Ali
Abouhlaima
Kherchtou
Fawwaz
Abdullah
Hage
Odeh
Owhali
Fazul
Azzam
Atwah
Fahad
Fadhil
Khalfan
Ghailani
Awad

Control the style of matrix entries denoting the lack of a connection, to be able to distinguish them from zero entries.
In[1540]:=

IGAdjacencyMatrixPlotg2, EdgeWeight "Betweenness", "UnconnectedColor" Black, ImageSize 300
Out[1540]=

O
sa
m
a

S
al
im A
li

A
bo
uh
la
im
a

K
he
rc
ht
ou

F
aw
w
az

A
bd
ul
la
h

H
ag
e

O
de
h

O
w
ha
li

F
az
ul

A
zz
am

A
tw
ah

F
ah
ad

F
ad
hi
l

K
ha
lfa
n

G
ha
ila
ni

A
w
ad

Osama
Salim
Ali

Abouhlaima
Kherchtou
Fawwaz
Abdullah

Hage
Odeh
Owhali
Fazul
Azzam
Atwah
Fahad
Fadhil
Khalfan
Ghailani
Awad

O
sa
m
a

S
al
im

A
li
A
bo
uh
la
im
a

K
he
rc
ht
ou

F
aw
w
az

A
bd
ul
la
h

H
ag
e

O
de
h

O
w
ha
li

F
az
ul

A
zz
am

A
tw
ah

F
ah
ad

F
ad
hi
l

K
ha
lfa
n

G
ha
ila
ni

A
w
ad

Osama
Salim
Ali
Abouhlaima
Kherchtou
Fawwaz
Abdullah
Hage
Odeh
Owhali
Fazul
Azzam
Atwah
Fahad
Fadhil
Khalfan
Ghailani
Awad

IGraph/M Documentation | 351

Plot the adjacency matrix of a very large network.
In[1541]:=

IGAdjacencyMatrixPlotExampleData"NetworkGraph", "PowerGrid"

Out[1541]=

1000 2000 3000 4000

1000

2000

3000

4000

1000 2000 3000 4000

1000

2000

3000

4000

Large adjacency matrices, like the one above, are downsampled by default to improve readability. This can be controlled

using the MaxPlotPoints option.
In[1542]:=

IGAdjacencyMatrixPlotExampleData"NetworkGraph", "USPoliticsBooks", MaxPlotPoints # & /@

Automatic, Infinity
Out[1542]=

50 100

50

100

50 100

50

100

,

50 100

50

100

50 100

50

100

The vertex names and the grid are not shown by default for large graphs.
In[1543]:=

g = ExampleData"NetworkGraph", "DolphinSocialNetwork"

Out[1543]=

352 | IGraph/M Documentation

In[1544]:=

IGAdjacencyMatrixPlot[g]
Out[1544]=

20 40 60

20

40

60

20 40 60

20

40

60

Force drawing vertex names and a grid regardless of the matrix size.
In[1545]:=

IGAdjacencyMatrixPlotg, VertexLabels "Name",

Mesh All, ImageSize 440, FrameTicksStyle Tiny, MeshStyle Thin
Out[1545]=

B
ea
k

B
ee
sc
ra
tc
h

B
um
pe
r

C
C
L

C
ro
ss

D
N
16

D
N
21

D
N
63

D
ou
bl
e

F
ea
th
er

F
is
h

F
iv
e

F
or
k

G
al
la
tin

G
rin

H
ae
ck
se
l

H
oo
k

Je
t

Jo
na
h

K
ni
t

K
rin
ge
l

M
N
10
5

M
N
23

M
N
60

M
N
83

M
us

N
ot
ch

N
um
be
r1

O
sc
ar

P
at
ch
ba
ck P
L

Q
ua
si

R
ip
pl
ef
lu
ke

S
ca
bs

S
hm
ud
de
l

S
M
N
5

S
N
10
0

S
N
4

S
N
63

S
N
89

S
N
9

S
N
90

S
N
96

S
tr
ip
es

T
hu
m
pe
r

To
pl
es
s

T
R
12
0

T
R
77

T
R
82

T
R
88

T
R
99

T
rig
ge
r

T
S
N
10
3

T
S
N
83

U
pb
an
g

V
au

W
av
e

W
eb

W
hi
te
tip
Z
ap Z
ig

Z
ip
fe
l

Beak
Beescratch
Bumper

CCL
Cross
DN16
DN21
DN63
Double
Feather

Fish
Five
Fork

Gallatin
Grin

Haecksel
Hook
Jet

Jonah
Knit

Kringel
MN105
MN23
MN60
MN83
Mus
Notch

Number1
Oscar

Patchback
PL

Quasi
Ripplefluke

Scabs
Shmuddel

SMN5
SN100
SN4
SN63
SN89
SN9
SN90
SN96
Stripes

Thumper
Topless
TR120
TR77
TR82
TR88
TR99
Trigger
TSN103
TSN83
Upbang

Vau
Wave
Web

Whitetip
Zap
Zig

Zipfel

B
ea
k

B
ee
sc
ra
tc
h

B
um
pe
r

C
C
L

C
ro
ss

D
N
16

D
N
21

D
N
63

D
ou
bl
e

F
ea
th
er

F
is
h

F
iv
e

F
or
k

G
al
la
tin

G
rin

H
ae
ck
se
l

H
oo
k

Je
t

Jo
na
h

K
ni
t

K
rin
ge
l

M
N
10
5

M
N
23

M
N
60

M
N
83

M
us

N
ot
ch

N
um
be
r1

O
sc
ar

P
at
ch
ba
ck

P
L
Q
ua
si

R
ip
pl
ef
lu
ke

S
ca
bs

S
hm
ud
de
l

S
M
N
5

S
N
10
0

S
N
4

S
N
63

S
N
89

S
N
9

S
N
90

S
N
96

S
tr
ip
es

T
hu
m
pe
r

To
pl
es
s

T
R
12
0

T
R
77

T
R
82

T
R
88

T
R
99

T
rig
ge
r

T
S
N
10
3

T
S
N
83

U
pb
an
g

V
au
W
av
e

W
eb

W
hi
te
tip

Z
ap
Z
ig
Z
ip
fe
l

Beak
Beescratch
Bumper
CCL
Cross
DN16
DN21
DN63
Double
Feather
Fish
Five
Fork
Gallatin
Grin
Haecksel
Hook
Jet
Jonah
Knit
Kringel
MN105
MN23
MN60
MN83
Mus
Notch
Number1
Oscar
Patchback
PL
Quasi
Ripplefluke
Scabs
Shmuddel
SMN5
SN100
SN4
SN63
SN89
SN9
SN90
SN96
Stripes
Thumper
Topless
TR120
TR77
TR82
TR88
TR99
Trigger
TSN103
TSN83
Upbang
Vau
Wave
Web
Whitetip
Zap
Zig
Zipfel

Reorder the adjacency matrix and draw grid lines to show community structure.
In[1546]:=

cl = IGCommunitiesEdgeBetweenness[g]
Out[1546]=

IGClusterData Elements: 62
Communities: 5

IGraph/M Documentation | 353

In[1547]:=

IGAdjacencyMatrixPlotg, Catenate@cl"Communities",

Mesh {#, #} &@FoldListPlus, 0, Length /@ cl"Communities"

Out[1547]=

20 40 60

20

40

60

20 40 60

20

40

60

Avoid rotating vertex names when not necessary:
In[1548]:=

IGAdjacencyMatrixPlot[IGShorthand["A-B-C-D,A-C"], "RotateColumnLabels" False]
Out[1548]=

A B C D

A

B

C

D

A B C D

A

B

C

D

354 | IGraph/M Documentation

Use custom labels for vertices.
In[1549]:=

g = ExampleData"NetworkGraph", "SimpleFoodWeb"

Out[1549]=

In[1550]:=

names = ThreadVertexList[g] Show#, ImageSize 20 & /@ IGVertexProp[VertexShape][g]

Out[1550]=

Sunflower , Aphid , Ladybug , Towhee , Owl , Grasshopper ,

Louse , Caterpillar , Beetle , Mosquito , Dragonfly , Mouse

In[1551]:=

IGAdjacencyMatrixPlotg, VertexLabels names,

"RotateColumnLabels" False, ImageSize Medium, ColorRules 0 White, 1 Black

Out[1551]=

IGraph/M Documentation | 355

IGZeroDiagonal
In[1552]:=

? IGZeroDiagonal

IGZeroDiagonal[matrix] replaces the diagonal of matrix with zeros.

IGZeroDiagonal replaces the diagonal of a matrix with zeros. It works on dense and sparse matrices, and supports

non-square matrices. This function is particularly useful when constructing adjacency matrices that are to be converted

to a graph.
In[1553]:=

mat = RandomReal[1, {6, 4}];

In[1554]:=

IGZeroDiagonal[mat] // MatrixForm
Out[1554]//MatrixForm=

0. 0.600462 0.714719 0.219205
0.000765022 0. 0.545862 0.152902
0.41223 0.216464 0. 0.466637
0.7378 0.862239 0.296108 0.
0.35644 0.629269 0.161126 0.129645
0.723072 0.270523 0.519175 0.562455

Connect those points in the plane whose Euclidean distance is less than 0.2, but do not connect each point with itself.
In[1555]:=

pts = RandomReal[1, {30, 2}];

AdjacencyGraph

IGZeroDiagonal@UnitStep0.2 - DistanceMatrix[pts],

VertexCoordinates pts

Out[1556]=

356 | IGraph/M Documentation

Connect each cell in a rectangular mesh to its Moore neighbours.
In[1557]:=

arr = RandomInteger[1, {10, 10}];

mesh = ArrayMesh[arr]
Out[1558]=

First, generate the square–vertex adjacency matrix.
In[1559]:=

mat = IGMeshCellAdjacencyMatrix[mesh, 2, 0]
Out[1559]=

SparseArray
Specified elements: 208

Dimensions: {52, 112}

Then find the graph of squares adjacent through a corner point, but excluding self-adjacencies.
In[1560]:=

AdjacencyGraph

IGZeroDiagonal@Unitize[mat.Transpose[mat]],

VertexCoordinates PropertyValue{mesh, 2}, MeshCellCentroid,

GraphStyle "BasicBlack"

Out[1560]=

IGraph/M Documentation | 357

In[1561]:=

Show[mesh, %]

Out[1561]=

IGTakeUpper and IGTakeLower
In[1562]:=

? IGTakeUpper

IGTakeUpper [matrix] extracts the elements of a matrix that are above the diagonal.

In[1563]:=

? IGTakeLower

IGTakeLower [matrix] extracts the elements of a matrix that are below the diagonal.

IGTakeUpper and IGTakeLower extract the above-diagonal and below-diagonal elements of a matrix. The matrix

does not need to be square. The elements are always extracted row-by-row.
In[1564]:=

mat = Partition[Range[16], 4];

MatrixForm[mat]
Out[1565]//MatrixForm=

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

In[1566]:=

IGTakeUpper[mat]
Out[1566]=

{2, 3, 4, 7, 8, 12}

In[1567]:=

IGTakeLower[mat]
Out[1567]=

{5, 9, 10, 13, 14, 15}

358 | IGraph/M Documentation

IGTakeUpper and IGTakeLower support sparse matrices. When given a sparse array as input, the result will also be a

sparse array.
In[1568]:=

sa = SparseArray[RandomInteger[{1, 6}, {10, 2}] RandomInteger[10, 10]];

MatrixForm[sa]
Out[1569]//MatrixForm=

0 0 4 0 0 0
2 0 0 0 0 0
0 0 0 0 5 0
0 0 5 0 0 0
0 0 0 0 0 1
9 9 0 0 1 0

In[1570]:=

IGTakeUpper[sa]
Out[1570]=

SparseArray Specified elements: 3

Dimensions: {15}

In[1571]:=

Normal[%]
Out[1571]=

{0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 1}

IGTakeUpper and IGTakeLower are optimized for performance.
In[1572]:=

mat = RandomReal[1, {1000, 1000}];

In[1573]:=

IGTakeUpper[mat]; // RepeatedTiming
Out[1573]=

{0.000947801, Null}

Compute the mean pairwise distance of a random point set.
In[1574]:=

pts = RandomReal[1, {100, 2}];

Mean@IGTakeUpper@DistanceMatrix[pts]
Out[1575]=

0.353733

Import and export
IGraph/M provides importers and exporters for certain graph formats.

Importing
In[1576]:=

? IGImport

IGImport[file] imports the graphs stored in file, inferring the format from the file extension.
IGImport[file, format] imports assuming the given file format. See $IGImportFormats for supported formats.

In[1577]:=

? IGImportString

IGImportString[string, format] imports the graphs stored in string assuming the given format.

IGraph/M Documentation | 359

Importing is done using IGImport and IGImportString, which work analogously to the built-in Import and

ImportString. The supported export formats are listed in $IGImportFormats:

In[1578]:=

$IGImportFormats
Out[1578]=

{Graph6}

Nauty / Graph6

The Graph6, Sparse6 and Digraph6 formats are used by the gtools suite included with nauty. IGraph/M refers to this

family of formats collectively as the “Nauty formats”. gtools includes many command line programs for generating,
transforming and filtering graphs. For more information about gtools, see http://pallini.di.uniroma1.it/

The formal description of these formats is available on the home page of Brendan McKay at https://users.cecs.anu.e-
du.au/~bdm/data/formats.html.

As of version 12.1, Mathematica has built-in support for Graph6 and Sparse6, but not for Digraph6. IGraph/M provides

support Digraph6, a unified interface to all three formats (with auto-detection of the specific sub-format), as well as

significantly better performance.

To convert a single string to a graph, use IGFromNauty.
In[1579]:=

IGFromNauty["JR_IK?@?I?_"]
Out[1579]=

360 | IGraph/M Documentation

http://pallini.di.uniroma1.it/
https://users.cecs.anu.edu.au/~bdm/data/formats.html
https://users.cecs.anu.edu.au/~bdm/data/formats.html

The purpose of IGImport and IGImportString is to read lists containing several graphs.

In[1580]:=

IGImportString"

G]kq]K

G]dq\\S

G]Ku]W

G[|akk

GS\\unO

G~`HW{", "Graph6"
Out[1580]=

 , , ,

, ,

The following examples assume that the gtools programs are in a directory that is on the operating system’s PATH

environment variable. If necessary, specify the full path to each program.

IGraph/M Documentation | 361

Generate all non-isomorphic undirected graphs on 4 vertices.
In[1582]:=

IGImport["!geng 4", "Nauty"]
Out[1582]=

 , , ,

, , , ,

, , ,

362 | IGraph/M Documentation

Generate all non-isomorphic directed graphs on 3 vertices.
In[1583]:=

IGImport"!geng 3 | directg", "Graph6", GraphLayout "CircularEmbedding"

Out[1583]=

 , , , ,

, , , ,

, , , ,

, , ,

IGraph/M Documentation | 363

Find all non-isomorphic cactus graphs on 5 vertices. A cactus on V vertices has between V - 1 and 3 (V - 1) /2 edges. Thus

we instruct the geng program to only generate connected graphs with an edge count in this range.
In[1584]:=

Select

IGImport"!geng -c 5 4:6", "Graph6", GraphStyle "Minimal",

IGCactusQ

Out[1584]=

 , , , ,

, , , ,

Generate all strongly connected tournaments on 5 vertices.
In[1585]:=

IGImport["!gentourng -c 5 -z", "Graph6"]
Out[1585]=

 , , ,

, ,

364 | IGraph/M Documentation

Generate all non-isomorphic trees on 6 vertices. gengtreeg outputs Sparse6 by default. IGImport detects this format
automatically.

In[1586]:=

IGImport["!gentreeg 6", "Nauty", GraphStyle "WarmColor"]
Out[1586]=

 , , ,

, ,

Exporting
In[1587]:=

? IGExport

IGExport[file, graph] exports graph to file in a format inferred from the file extension.
IGExport[file, graph, format] exports graph to file in the given format. See $IGExportFormats for supported formats.

In[1588]:=

? IGExportString

IGExportString[graph, format] generates a string corresponding
to graph in the given format. See $IGExportFormats for supported formats.

Exporting is done using IGExport and IGExportString, which work analogously to the built-in Export and

ExportString. The supported export formats are listed in $IGExportFormats:

In[1589]:=

$IGExportFormats
Out[1589]=

{GraphML}

IGraph/M Documentation | 365

GraphML

As of Mathematica 13.0, the built-in Export function produces non-standard GraphML files that cannot be read by some

other graph manipulation packages, such as the igraph library itself. IGExport provides a standards-compliant
implementation.

In[1590]:=

IGExportString

ExampleData"NetworkGraph", "EurovisionVotes",

"GraphML"

 // Short[#, 15] & (* avoid showing more than 15 lines *)

Out[1590]//Short=

<?xml version='1.0' encoding='UTF-8'?>

<!-- created by IGraph/M, http://szhorvat.net/mathematica/IGraphM -->

<graphml xmlns='http://graphml.graphdrawing.org/xmlns'

xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'

xsi:schemaLocation='http://graphml.graphdrawing.org/xmlns

http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd'>

<key for='edge'

id='e_EdgeWeight'

attr.name='EdgeWeight'

attr.type='long' />

<graph id='Graph'

edgedefault='directed'>

<node id='Albania' />

<node id='Andorra' />

<node id='A… </edge>

<edge source='United Kingdom'

target='Malta'>

<data key='e_EdgeWeight'>3</data>

</edge>

<edge source='United Kingdom'

target='Netherlands'>

<data key='e_EdgeWeight'>1</data>

</edge>

<edge source='United Kingdom'

target='Norway'>

<data key='e_EdgeWeight'>1</data>

</edge>

<edge source='United Kingdom'

target='Sweden'>

<data key='e_EdgeWeight'>2</data>

</edge>

<edge source='United Kingdom'

target='Turkey'>

<data key='e_EdgeWeight'>3</data>

</edge>

</graph>

</graphml>

366 | IGraph/M Documentation

Utility functions

Structural transformations

IGUndirectedGraph
In[1591]:=

? IGUndirectedGraph

IGUndirectedGraph[graph, conv] converts a directed graph to undirected with the given conversion method: "Simple" creates
a single edge between connected vertices; "All" creates an undirected edge for each directed one andmay
produce a multigraph; "Mutual" creates a single undirected edge only between mutually connected vertices.

IGUndirectedGraph[g, method] converts a directed graph to an undirected one, using the specified edge conver-

sion method:

◼"Simple" creates a single undirected edge between connected vertices

◼"All" creates one undirected edge for each directed one. This may result in multiple edges between the same

vertices.

◼"Mutual" creates an edge only between mutually connected vertices.

If the graph was already undirected, it will not be changed.

IGUndirectedGraph is guaranteed to preserve both the vertex names and the vertex ordering of the original graph.
The built-in UndirectedGraph has a bug where it sometimes relabels vertices.

Warning: As of IGraph/M 0.5, IGUndirectedGraph discards graph properties such as edge weights.
In[1592]:=

g = ;

In[1593]:=

IGUndirectedGraph[g, #] & /@ "Simple", "All", "Mutual"
Out[1593]=

 , ,

IGraph/M Documentation | 367

The default method is "Simple":
In[1594]:=

IGUndirectedGraph[g]
Out[1594]=

Self-loops are preserved by all methods:
In[1595]:=

IGUndirectedGraph[Graph[{1, 2}, {1 1, 1 2}], #] & /@ "Simple", "All", "Mutual"
Out[1595]=

 , ,

IGReverseGraph
In[1596]:=

? IGReverseGraph

IGReverseGraph[graph] reverses the directed edges in graph while preserving edge weights.

In Mathematica 11.3 and earlier, ReverseGraph does not correctly transfer graph properties such as edge weights to

the result.

IGReverseGraph reverses the direction of each edge while preserving the following graph properties: EdgeWeight,

EdgeCapacity, EdgeCost, VertexWeight, VertexCapacity. Other properties are discarded.

Undirected graphs are returned unmodified.

IGSimpleGraph
In[1597]:=

? IGSimpleGraph

IGSimpleGraph[graph] converts graph to a simple
graph by removing self-loops andmulti-edges, according to the given options.

368 | IGraph/M Documentation

IGSimpleGraph removes self-loops and collapses multi-edges into simple ones, as specified in the options.

The available options are:

◼SelfLoops True keeps self-loops in the graph.

◼MultiEdges True keeps parallel edges in the graph.

In[1598]:=

IGSimpleGraph , SelfLoops #1, MultiEdges #2 & @@@

{{True, True}, {True, False}, {False, True}, {False, False}}
Out[1598]=

 , , ,

IGDisjointUnion
In[1599]:=

? IGDisjointUnion

IGDisjointUnion[{g1, g2,…}] gives a disjoint union of the graphs. Each vertex of the result will be
a pair consisting of the index of the graph originally containing it and the original name of the vertex.

IGDisjointUnion will combine the given graphs into a single graph having them as its connected components.

IGDisjointUnion differs from the built-in GraphDisjointUnion in several ways.

IGDisjointUnion takes the input graphs in a list instead of as separate arguments. It can also take graph options to

apply to the final graph.
In[1600]:=

IGDisjointUnion{TuranGraph[8, 2], TuranGraph[6, 3]},

EdgeStyle Black,

VertexStyle DirectiveFaceForm[], EdgeForm@DirectiveThick, , VertexSize Medium

Out[1600]=

IGraph/M Documentation | 369

IGDisjointUnion is considerably faster than GraphDisjointUnion when combining moderately sized networks.
In[1601]:=

graphs = RandomGraph[{300, 600}, 30];

In[1602]:=

IGDisjointUnion[graphs]; // RepeatedTiming
Out[1602]=

{0.0141539, Null}

In[1603]:=

GraphDisjointUnion @@ graphs; // RepeatedTiming
Out[1603]=

{0.537449, Null}

IGDisjointUnion does not support mixed graphs.
In[1604]:=

IGDisjointUnion[{Graph[{1 2}], Graph[{1 2}]}]

IGDisjointUnion: IGDisjointUnion does not support mixed graphs.

Out[1604]=

$Failed

Use GraphDisjointUnion instead.
In[1605]:=

GraphDisjointUnion[Graph[{1 2}], Graph[{1 2}]]
Out[1605]=

IGDisjointUnion will use vertex names of the form {gi, v}, where gi is an identifier of the original graph and v is

the original name of the vertex. When the input is a list gi is the index of the original graph. When the input is an associa-

tion, gi is its key.

In contrast, GraphDisjointUnion uses consecutive integers as vertex names. Use IndexGraph to obtain a similar
result from the output of IGDisjointUnion.

In[1606]:=

g = IGDisjointUnion["a" CycleGraph[4], "b" StarGraph[4]];

VertexList[g]
Out[1607]=

{{a, 1}, {a, 2}, {a, 3}, {a, 4}, {b, 1}, {b, 2}, {b, 3}, {b, 4}}

370 | IGraph/M Documentation

This allows for convenient further manipulation, or for copying over arbitrary properties stored in the original graphs.
In[1608]:=

Graph[g, VertexStyle {{"a", _} Green, {"b", _} Red}]
Out[1608]=

In[1609]:=

graphs = {

Graph[{Property[1 2, "length" 5]}],

Graph[{Property[1 2, "length" 3], Property[3 2, "length" 2]}]

};

IGDisjointUniongraphs,

Properties

gi_, v1_ gi_, v2_ "length" PropertyValuegraphsgi, v1 v2, "length"
Out[1610]=

In[1611]:=

IGEdgeProp["length"][%]
Out[1611]=

{5, 3, 2}

IGraph/M Documentation | 371

IGDisjointUnion is also practically useful for simply showing many small graphs together.
In[1612]:=

IGDisjointUnion

Select[IGGraphAtlas /@ Range[2, 150], IGConnectedQ],

GraphStyle "BasicBlue", VertexSize 1

Out[1612]=

In[1613]:=

g = IndexGraph[%]; (* workaround for highlighting in Mathematica ≤ 11.2 *)

HighlightGraphIGLayoutFruchtermanReingold[g], ConnectedGraphComponents[g]

Out[1614]=

IGOrientTree
In[1615]:=

? IGOrientTree

IGOrientTree[tree, root] orients the edges of an undirected tree so that they point
away from the root. The vertex order is not preserved: vertices will be ordered topologically.

IGOrientTree[tree, root, "In"] orients the edges so that they point towards the root.

372 | IGraph/M Documentation

IGOrientTree creates an out-tree (also called an arborescence) out of an undirected tree. Graph properties are

preserved, but the vertex ordering of the graph is changed.
In[1616]:=

g = KaryTree[10, 3, VertexLabels "Name"]
Out[1616]=

1

2 3 4

5 6 7 8 9 10

In[1617]:=

IGOrientTree[g, 1]
Out[1617]=

1

2 3 4

5 6 7 8 9 10

In[1618]:=

IGOrientTreeg, 5, GraphLayout "LayeredDigraphEmbedding"

Out[1618]=

5

2

1

6 7

3

4

8 9 10

The result is an out-tree, also called an arborescence.
In[1619]:=

IGTreeQ[%, "Out"]
Out[1619]=

True

Once the tree is made directed, it is easy to find its root and leaf nodes:
In[1620]:=

IGSourceVertexList[%], IGSinkVertexList[%]

Out[1620]=

{IGSourceVertexList[True], IGSinkVertexList[True]}

IGraph/M Documentation | 373

Edges can be oriented towards or away from the root.
In[1621]:=

t = IGTreeGame7, VertexLabels Automatic

Out[1621]=

1

2

3

4

5 6

7

In[1622]:=

IGOrientTreet, 4, #, GraphLayout "LayeredEmbedding", "RootVertex" 4 & /@ {"In", "Out"}

Out[1622]=

2

3
7 1

5 6

4

,

4

6 5

1 7
3

2

IGTakeSubgraph
In[1623]:=

? IGTakeSubgraph

IGTakeSubgraph [graph, subgraph] keeps only those vertices and
edges of graph which are also present in subgraph, while retaining all graph properties.

IGTakeSubgraph [graph, edges] uses an edge list as the subgraph specification.

IGTakeSubgraph[graph, subgraph] will effectively transfer graph properties of a larger graph onto its specified

subgraph. It can be used in conjunction with other graph subsetting functions that do not retain some or all graph proper-
ties, such as Subgraph, VertexDelete, NeighborhoodGraph, etc.

If only the edge weights need to be preserved, use IGWeightedSubgraph when possible. It offers better performance.

374 | IGraph/M Documentation

Take a subgraph of a larger graph while preserving all graph properties, including styling attributes.
In[1624]:=

g = ExampleData"NetworkGraph", "EastAfricaEmbassyAttacks"

Out[1624]=

Osama
Salim

Ali

Abouhlaima

Kherchtou

Fawwaz

Abdullah
Hage

Odeh

Owhali

Fazul

Azzam

Atwah

Fahad
Fadhil

Khalfan

GhailaniAwad

In[1625]:=

IGTakeSubgraphg, Subgraphg, "Osama", "Salim", "Abdullah", "Hage", "Abouhlaima", "Owhali"

Out[1625]=

Osama
Salim

Abdullah
Hage

Abouhlaima

Owhali

Show the neighbourhood graph of a vertex while preserving vertex shapes.
In[1626]:=

g = ExampleData"NetworkGraph", "SimpleFoodWeb"

Out[1626]=

IGraph/M Documentation | 375

In[1627]:=

IGTakeSubgraphg, NeighborhoodGraphg, "Sunflower"

Out[1627]=

Take a subgraph of a mesh graph while preserving vertex coordinates.
In[1628]:=

g = IGMeshGraph[DelaunayMesh@RandomReal[1, {10, 2}], VertexLabels "Name"]
Out[1628]=

1

2

3

4

5

6

7

8

9

10

In[1629]:=

IGTakeSubgraphg, First@FindHamiltonianCycle[g]

Out[1629]=

1

3

2

7

10

9
6 8

5

4

Graph editor
In[1630]:=

? IGGraphEditor

IGGraphEditor[] typesets to an interactive graph editor. Use-click to add/remove vertices/edges.
IGGraphEditor[graph] uses the given graph as the starting point.

Experimental: This is experimental functionality that is likely to change significantly in the future.

IGGraphEditor[] typesets an interactive graph editor, which is convenient for creating small graphs interactively. To

376 | IGraph/M Documentation

add or remove vertices, or remove edges, click while holding down (Windows and Linux) or (macOS). To add edges,
click the first vertex to connect, then the second one.

Evaluating the editor using - creates a standard Graph object.

Available options:

◼DirectedEdges True creates a directed graph when no input graph is given.

◼"KeepVertexCoordinates" False will not preserve the vertex coordinates from the editor view.

◼"IndexGraph" True renumbers vertices using increasing integers, regardless of their original names in the input
graph.

◼ImageSize sets the editor size to the given width.

◼VertexLabels "Name" shows vertex labels in the editor.

◼VertexSize sets the vertex size. Valid values are Tiny, Small, Medium, Large or a numeric value interpreted as a

fraction of the editor view diagonal.

◼"PerformanceLimit" sets the maximum number of graph elements (vertices and edges) that are allowed in the

editor. The default is 450.

◼"SnapToGrid" True will snap vertices to points on a grid while dragging.

◼"CreateVertexSelects" False disables immediately selecting newly created vertices to add a connection.

The editor can be used to modify an existing graph:
In[1631]:=

IGGraphEditor[CycleGraph[5], VertexLabels "Name"]
Out[1631]=

1

2

3

45

Other utility functions

IGIndexEdgeList
In[1632]:=

? IGIndexEdgeList

IGIndexEdgeList[graph] gives the edge list of graph in terms of vertex indices, as a packed array.

IGraph/M Documentation | 377

IGIndexEdgeList is useful for implementing graph processing functions in Mathematica, and is used internally by

many IGraph/M functions that do not call the igraph library.
In[1633]:=

IGIndexEdgeList[Graph[{a, b, c}, {b c, c a}]]
Out[1633]=

{{2, 3}, {1, 3}}

In[1634]:=

Developer`PackedArrayQ[%]
Out[1634]=

True

IGIndexEdgeList[g] is faster than EdgeList[g] and usually much faster than EdgeList@IndexGraph[g].

In[1635]:=

g = ExampleData"NetworkGraph", "CondensedMatterCollaborations";

In[1636]:=

First@RepeatedTiming@EdgeList[g],

First@RepeatedTiming@EdgeList@IndexGraph[g],

First@RepeatedTiming@IGIndexEdgeList[g]

Out[1636]=

{0.0110604, 0.301264, 0.0017866}

In[1637]:=

List @@@ Sort /@ EdgeList@IndexGraph[g] === Sort /@ IGIndexEdgeList[g]
Out[1637]=

True

A graph can be directly re-built from an index-based edge list.
In[1638]:=

Graph[{a, b, c}, {{2, 3}, {1, 3}}]
Out[1638]=

IGSameGraphQ
In[1639]:=

? IGSameGraphQ

IGSameGraphQ[graph1, graph2] returns True if the given graphs have the same
vertices and edges. Graph properties or edge and vertex orderings are not taken into account.

IGSameGraphQ checks if two graphs have the same vertex and edge set. Edge and vertex properties, as well as edge

tags, are ignored.
In[1640]:=

IGSameGraphQIGShorthand"1-2-1", MultiEdges True, Graph[{1 2, 1 2}]

Out[1640]=

True

The vertex names must be the same in order for IGSameGraphQ to return True.
In[1641]:=

IGSameGraphQIGShorthand"A-B-A", MultiEdges True, Graph[{1 2, 1 2}]
Out[1641]=

False

378 | IGraph/M Documentation

The order of the edge and vertex lists does not matter.
In[1642]:=

IGSameGraphQ[Graph[{1 2, 3 4}], Graph[{4 3, 1 2}]]
Out[1642]=

True

For non-Graph expressions, IGSameGraphQ returns False.
In[1643]:=

IGSameGraphQ[1, 2]
Out[1643]=

False

IGCanonicalLabeledGraph
In[1644]:=

? IGCanonicalLabeledGraph

IGCanonicalLabeledGraph[graph] canonicalizes the vertex and edge lists of a graph while preserving vertex names.

IGCanonicalLabeledGraph creates a canonical version of labelled graphs so that
IGCanonicalLabeledGraph[g1] === IGCanonicalLabeledGraph[g2] holds precisely when

IGSameGraphQ[g1, g2].

This function discards all graph properties, as well as edge tags.
In[1645]:=

g1 = Graph{4 3, 1 2}, VertexLabels Automatic;

g2 = Graph{1 2, 3 4}, VertexLabels Automatic;

IGCanonicalLabeledGraph[g1] === IGCanonicalLabeledGraph[g1]
Out[1647]=

True

IGCanonicalLabeledGraph is useful in conjunction with DeleteDuplicatesBy.
In[1648]:=

DeleteDuplicatesBy{g1, g2, g1}, IGCanonicalLabeledGraph
Out[1648]=

43

12

IGCanonicalEdgeList
In[1649]:=

? IGCanonicalEdgeList

IGCanonicalEdgeList[edges] canonicalizes an edge list.

IGCanonicalEdgeList canonicalizes an edge list in a way similar to IGCanonicalLabeledGraph.

IGSameGraphQ[g1, g2] is equivalent to

IGCanonicalEdgeList@EdgeList[g1] === IGCanonicalEdgeList@EdgeList[g2] when g1 and g2 have

no isolated vertices.

This function discards edge tags.

IGCanonicalLabeledEdgeList is useful in conjunction with DeleteDuplicatesBy.

IGraph/M Documentation | 379

Highlight all distinct K3,3 subgraphs of a Queen graph:

In[1650]:=

g = GraphData[{"Queen", {2, 4}}];

sg = CompleteGraph[{3, 3}];

In[1652]:=

HighlightGraphg, Graph[#], GraphHighlightStyle "Thick" & /@ DeleteDuplicatesBy

IGCanonicalEdgeList@EdgeList[sg] /. IGLADFindSubisomorphisms[sg, g],

IGCanonicalEdgeList

Out[1652]=

 , , , , ,

, , , , ,

, , , , ,

, , , ,

IGAdjacentVerticesQ
In[1653]:=

? IGAdjacentVerticesQ

IGAdjacentVerticesQ[graph, {u, v}] tests if vertex v is adjacent to vertex u in graph.

380 | IGraph/M Documentation

IGAdjacentVerticesQ[graph, {u, v}] tests if there is an edge from u to v.

In[1654]:=

g = CycleGraph6, DirectedEdges True, VertexLabels "Name"

Out[1654]=

1

2

3

4

5

6

In[1655]:=

IGAdjacentVerticesQ[g, {1, 2}]
Out[1655]=

True

Edge directions are taken into account:
In[1656]:=

IGAdjacentVerticesQ[g, {2, 1}]
Out[1656]=

False

The following vertices are not adjacent:
In[1657]:=

IGAdjacentVerticesQ[g, {1, 3}]
Out[1657]=

False

Vertices that are not part of the graph are allowed. They are considered not to be adjacent:
In[1658]:=

IGAdjacentVerticesQ[g, {"x", 2}]
Out[1658]=

False

IGPartitionsToMembership and IGMembershipToPartitions
In[1659]:=

? IGPartitionsToMembership

IGPartitionsToMembership [elements, partitions] computes a membership vector for the given partitioning of elements.
IGPartitionsToMembership [graph, partitions] computes a membership vector for the given partitioning of graph's vertices.
IGPartitionsToMembership [elements] is an operator that can be applied to partitions.

IGraph/M Documentation | 381

In[1660]:=

? IGMembershipToPartitions

IGMembershipToPartitions [elements, membership]
computes a partitioning of elements based on the given membership vector.

IGMembershipToPartitions [graph, membership]
computes a partitioning graph's vertices based on the given membership vector.

IGMembershipToPartitions [elements] is an operator that can be applied to membership vectors.

A partitioning of a set of elements can be represented in multiple ways. One way is to list the members of each partition.
Another is to annotate each element with the index of the partition it belongs to, i.e. construct a “membership vector”.
These functions convert between these representations.

IGraph/M generally uses disjoint subsets to represents partitions. Membership vectors are useful when storing the mem-
bership information as vertex attributes, or when exchanging data with other interfaces of igraph.

In[1661]:=

IGPartitionsToMembership[{a, b, c, d}, {{a, c}, {d, b}}]
Out[1661]=

{1, 2, 1, 2}

In[1662]:=

IGMembershipToPartitions[{a, b, c, d}, {1, 2, 1, 2}]
Out[1662]=

{{a, c}, {b, d}}

If the given partitions do not cover the element set, the missing elements will be marked with 0 in the membership vector.
In[1663]:=

IGPartitionsToMembership[{a, b, c, d}, {{a}, {b, d}}]
Out[1663]=

{1, 2, 0, 2}

The following graph has the type of nodes encoded as a vertex attribute.
In[1664]:=

g = ExampleData"NetworkGraph", "BipartiteDiseasomeNetwork";

IGVertexProp["Type"][g] // Short
Out[1665]//Short=

{Disease, Disease, Disease, Disease, Disease, 3052, Entrez, Entrez, Entrez, Entrez}

Let us extract the attribute values as a vector and construct the two vertex partitions.
In[1666]:=

parts = IGMembershipToPartitions[g, IGVertexProp["Type"][g]];

Verify that the graph is bipartite according to this partitioning.
In[1667]:=

IGBipartiteQ[g, parts]
Out[1667]=

True

Annotate the vertices of a bipartite graph with their computed membership value.
In[1668]:=

g = IGBipartiteGameGNM5, 6, 14, VertexSize Large;

382 | IGraph/M Documentation

In[1669]:=

g = IGVertexMap

&,

"membership" IGPartitionsToMembershipVertexList[g]@*IGBipartitePartitions,

g

;

Colour the vertices accordingly.
In[1670]:=

IGVertexMapColorData[100], VertexStyle IGVertexProp"membership", g

Out[1670]=

Visualize a vertex colouring using HighlightGraph.

In[1671]:=

g = IGSquareLattice{2, 2, 2, 2}, "Periodic" True
Out[1671]=

IGraph/M Documentation | 383

In[1672]:=

HighlightGraph

g, IGMembershipToPartitionsg, IGVertexColoring[g],

VertexSize Medium, GraphHighlightStyle "DehighlightGray"

Out[1672]=

IGReorderVertices
In[1673]:=

? IGReorderVertices

IGReorderVertices[vertices, graph] reorders the vertices
of graph according to the given vertex vector. Graph properties are preserved.

IGReorderVertices changes the order in which graph vertices are stored. The graph itself is not modified, only its
representation. The ordering of vertices affects how several of Mathematica’s graph processing functions work.

Let us use a styled graph for illustration, to demonstrate that graph properties are preserved.
In[1674]:=

g1 = RandomGraph{5, 5}, VertexStyle 1 LightRed, 3 LightGreen,

VertexSize Medium, VertexLabels PlacedAutomatic, Center
Out[1674]=

1

2 3 4

5

In[1675]:=

g2 = IGReorderVertices[{5, 4, 3, 2, 1}, g1]
Out[1675]=

5

432

1

In[1676]:=

VertexList /@ {g1, g2}
Out[1676]=

{{1, 2, 3, 4, 5}, {5, 4, 3, 2, 1}}

384 | IGraph/M Documentation

In[1677]:=

IGIsomorphicQ[g1, g2]
Out[1677]=

True

The result of certain operations, such as DirectedGraph[…, "Acyclic"] or AdjacencyMatrix, depends on the

vertex ordering.
In[1678]:=

DirectedGraph#, "Acyclic" & /@ {g1, g2}

Out[1678]=

1

2

3

4

5

,

5

4

3

2

1

Order the vertices of a directed acyclic graph so that its adjacency matrix is upper triangular.
In[1679]:=

g = RandomGraph{10, 30}, DirectedEdges True;

g = EdgeDelete[g, IGFeedbackArcSet[g]];

ArrayPlot /@ AdjacencyMatrix /@ g, IGReorderVerticesTopologicalSort[g], g

Out[1681]=

 ,

Visualize a graph so that a Hamiltonian cycle is on a circle.
In[1682]:=

g = GraphData["DodecahedralGraph"];

IGLayoutCircle@IGReorderVerticesFindHamiltonianCycle[g]〚1, All, 1〛, g
Out[1683]=

IGraph/M Documentation | 385

Change the order how graph vertices are drawn in a circular layout without discarding any styling or other properties.
In[1684]:=

g = IGLayoutCircle

ExampleData"NetworkGraph", "EastAfricaEmbassyAttacks",

VertexLabels _ Placed"Name", Tooltip

Out[1684]=

In[1685]:=

IGLayoutCircle@IGReorderVerticesRandomSample@VertexList[g], g

Out[1685]=

Reorder the vertices of a bipartite graph to make the bipartite structure explicit in its adjacency matrix. Note that if the

goal is simply visualizing the adjacency matrix, IGAdjacencyMatrixPlot can be used instead.
In[1686]:=

g = CycleGraph[10];

ArrayPlot /@ AdjacencyMatrix /@ g, IGReorderVerticesFlatten@IGBipartitePartitions[g], g

Out[1687]=

 ,

386 | IGraph/M Documentation

Order the vertices of a graph by increasing degree.
In[1688]:=

g = RandomGraph[{20, 40}];

IGLayoutCircle[g],

IGLayoutCircle@IGReorderVerticesVertexList[g]Ordering@VertexDegree[g], g
Out[1689]=

 ,

IGAdjacencyList
In[1690]:=

? IGAdjacencyList

IGAdjacencyList[graph] gives the adjacency list of graph as an association.
IGAdjacencyList[graph, "In"] gives the adjacency list of the reverse of a directed graph.
IGAdjacencyList[graph, "All"] considers both incoming and outgoing edges.

IGAdjacencyList returns the adjacency list of a graph as an association. This is often a more useful format than what
the built-in AdjacencyList provides.

In[1691]:=

IGAdjacencyList[Graph[{1 2}]]
Out[1691]=

1 {2}, 2 {1}

For directed graphs, only outgoing edges are considered when building the adjacency list. In contrast, the built-in

AdjacencyList ignores edge directions.
In[1692]:=

IGAdjacencyList[Graph[{1 2}]]
Out[1692]=

1 {2}, 2 {}

In[1693]:=

AdjacencyList[Graph[{1 2}]]
Out[1693]=

{{2}, {1}}

Consider incoming edges instead.
In[1694]:=

IGAdjacencyList[Graph[{1 2}], "In"]
Out[1694]=

1 {}, 2 {1}

Consider both incoming and outgoing edges.
In[1695]:=

IGAdjacencyList[Graph[{1 2}], "All"]
Out[1695]=

1 {2}, 2 {1}

IGraph/M Documentation | 387

With this option, reciprocal edges are considered individually in directed graphs.
In[1696]:=

IGAdjacencyList[Graph[{1 2, 2 1}], "All"]
Out[1696]=

1 {2, 2}, 2 {1, 1}

Multi-edges and self-loops are supported. In contrast, the built-in AdjacencyList ignores them.
In[1697]:=

IGAdjacencyList[Graph[{1 2, 1 2, 2 2, 2 2}]]
Out[1697]=

1 {2, 2}, 2 {2, 2}

In[1698]:=

AdjacencyList[Graph[{1 2, 1 2, 2 2}]]
Out[1698]=

{{2}, {1, 2}}

Self-loops are traversed in only one direction in undirected graphs. Thus the result of the below is not 1 {1, 1}

but simply 1 {1}. This is consistent with AdjacencyMatrix, but not with VertexDegree.

In[1699]:=

IGAdjacencyList[Graph[{1 1}]]
Out[1699]=

1 {1}

IGAdjacencyList can be used to find the parent of each node in a rooted tree. The root itself will have no parent.
In[1700]:=

IGAdjacencyList
1

2

3

4

5

6

7

8

, "In"

Out[1700]=

1 {5}, 2 {1}, 3 {5}, 4 {3}, 5 {6}, 6 {}, 7 {5}, 8 {6}

Find the children of each node.
In[1701]:=

IGAdjacencyList
1

2

3

4

5

6

7

8

, "Out"

Out[1701]=

1 {2}, 2 {}, 3 {4}, 4 {}, 5 {1, 3, 7}, 6 {5, 8}, 7 {}, 8 {}

IGAdjacencyGraph
In[1702]:=

? IGAdjacencyGraph

IGAdjacencyGraph[matrix] creates a graph from the given adjacency matrix.
IGAdjacencyGraph[vertices, matrix] creates a graph with the given vertices from an adjacency matrix.
IGAdjacencyGraph[adjList] creates a graph from an association representing an adjacency list.

IGAdjacencyGraph can convert an adjacency matrix or an adjacency list representation of a graph into a Graph

388 | IGraph/M Documentation

expression. When given a matrix, it behaves equivalently to the built-in function AdjacencyGraph.

The available options are:

◼DirectedEdges True and DirectedEdges False create a directed or undirected graph, respectively. The

default setting is DirectedEdges Automatic, which creates an undirected graph when this is consistent with

the given adjacency matrix or adjacency list.

Compute the adjacency list of a graph, then convert it back to a Graph expression.
In[1703]:=

g = RandomGraph{5, 6}, DirectedEdges True, VertexLabels "Name"

Out[1703]=

1

2

3

4

5

In[1704]:=

IGAdjacencyList[g]
Out[1704]=

1 {}, 2 {1}, 3 {1, 2, 4}, 4 {2, 5}, 5 {}

IGraph/M Documentation | 389

In[1705]:=

IGAdjacencyGraph[%]
Out[1705]=

The representation of combinatorial embeddings used by IGraph/M is also a valid adjacency list.
In[1706]:=

IGPlanarEmbedding@CompleteGraph[4]
Out[1706]=

1 {2, 3, 4}, 2 {1, 4, 3}, 3 {2, 4, 1}, 4 {3, 2, 1}

In[1707]:=

IGAdjacencyGraph[%]
Out[1707]=

IGVertexAssociate
In[1708]:=

? IGVertexAssociate

IGVertexAssociate[fun][graph] associates the result of fun[graph]with the vertices of graph.
IGVertexAssociate[fun][graph, vertices] associates the result of fun[graph, vertices]with vertices.

IGVertexAssociatefun is an operator that, when applied to graph, will associate the result of fun[graph]

390 | IGraph/M Documentation

with each vertex.

In Mathematica, functions that compute a value for each vertex always return a list, with the values ordered to correspond

to the VertexList of the graph. In many situations, it is more convenient to use an association where the keys are the

vertex names. If fun is a function that computes a vertex property and gives the result as a list, the operator
IGVertexAssociationfun will give an association instead.

Get the betweenness of a vertex by name:
In[1709]:=

net = ExampleData"NetworkGraph", "Friendship"

Out[1709]=

Anna

Rose

Nora

Ben

Larry

Carol
Rudy

Linda

James

In[1710]:=

betw = IGVertexAssociate[IGBetweenness][net]
Out[1710]=

Anna 15.5, Rose 0.5, Nora 1., Ben 0.5,

Larry 5.5, Carol 0., Rudy 4.5, Linda 1.5, James 1.

In[1711]:=

betw["Larry"]
Out[1711]=

5.5

IGraph/M has many functions which can be restricted to compute values for only a subset of vertices. These use the

syntax fun[graph, vertices]. If fun supports this syntax, then IGVertexAssociatefun also takes a vertex

list as its second argument.
In[1712]:=

IGVertexAssociateIGEccentricity[net, {"Anna", "James", "Rudy"}]

Out[1712]=

Anna 2, James 3, Rudy 2

Smoothen away the degree-2 vertices of a graph while retaining the coordinates of each vertex:
In[1713]:=

g = IGGiantComponent@RandomGraph[{100, 100}]
Out[1713]=

IGraph/M Documentation | 391

In[1714]:=

g2 = IGSmoothen[g] //

IGVertexMapIGVertexAssociateGraphEmbedding[g], VertexCoordinates VertexList

Out[1714]=

Compare the smoothened graph with the original in a flip view:
In[1715]:=

FlipView[{g, g2}]
Out[1715]=

Extract a vertex property as an association:
In[1716]:=

IGVertexAssociate[IGVertexProp["Group"]]@

ExampleData"NetworkGraph", "EastAfricaEmbassyAttacks"

Out[1716]=

Osama Planners, Salim Planners, Ali Planners, Abouhlaima Planners,

Kherchtou Planners, Fawwaz Planners, Abdullah Planners, Hage Planners,

Odeh Nairobi Cell, Owhali Nairobi Cell, Fazul Nairobi Cell, Azzam Nairobi Cell,

Atwah Planners, Fahad Dar es Salaam Cell, Fadhil Dar es Salaam Cell,

Khalfan Dar es Salaam Cell, Ghailani Dar es Salaam Cell, Awad Dar es Salaam Cell

IGTryUntil
In[1717]:=

? IGTryUntil

IGTryUntil[cond][expr] repeatedly evaluates expr until cond[expr] is True.
IGTryUntil[cond, max][expr] evaluates expr at most max times and returns $Failed if cond[expr]was never True.

IGTryUntil repeatedly evaluates an expression until the result of the evaluation satisfies a condition. It is particularly

useful for concisely implementing rejection sampling.

392 | IGraph/M Documentation

Choose 10 distinct random primes not greater than 100:
In[1718]:=

IGTryUntilDuplicateFreeQRandomPrime[100, 10]

Out[1718]=

{53, 61, 73, 41, 43, 19, 17, 67, 37, 11}

Create a power-law distributed degree sequence and build a corresponding graph:
In[1719]:=

IGRealizeDegreeSequence

IGTryUntilIGGraphicalQ@RandomVariateZipfDistribution[1], 100

Out[1719]=

Generate a random tree (a connected graph) with a given degree sequence using the configuration model:
In[1720]:=

ds = {3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1};

IGTryUntil[IGConnectedQ]@IGDegreeSequenceGameds, Method "ConfigurationModelSimple"
Out[1721]=

Some result will occur very infrequently or not at all, so it is useful to limit the number of trials. The following attempts to

generate a random non-connected cubic graph on 50 vertices, and simply returns $Failed if it does not succeed after
100 tries.

In[1722]:=

IGTryUntil[Not@*IGConnectedQ, 100]

IGDegreeSequenceGame

ConstantArray[3, 50],

Method "ConfigurationModelSimple"

Out[1722]=

$Failed

IGraph/M Documentation | 393

Built-in data

Graph data

The IGData[] function provides access to various useful datasets. In particular, it can list small directed graphs ordered

based on their IGIsoclass[], i.e. the same order that motif counting functions use.
In[1723]:=

? IGData

IGData[] returns a list of available items.
IGData[item] returns the requested item.

List the available datasets:
In[1724]:=

IGData[]
Out[1724]=

{{AllDirectedGraphs, 2}, {AllDirectedGraphs, 3}, {AllDirectedGraphs, 4},

{AllUndirectedGraphs, 2}, {AllUndirectedGraphs, 3}, {AllUndirectedGraphs, 4},

{AllUndirectedGraphs, 5}, {AllUndirectedGraphs, 6}, MANTriadLabels}

These are all size 3 directed graphs:
In[1725]:=

IGData"AllDirectedGraphs", 3 //

MapFramed@LabeledGraph#, ImageSize 50, IGIsoclass[#] & // Multicolumn

Out[1725]=

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

394 | IGraph/M Documentation

"MANTriadLabels" refers to the mutual, asymmetric, null labelling of triads used by IGTriadCensus[]. Each label
is mapped to the corresponding graph, ordered based on their IGIsoclass. This is useful for converting the output of
IGTriadCensus[] to a format compatible with IGMotifs[].

In[1726]:=

g = RandomGraph{20, 50}, DirectedEdges True;

IGMotifs[g, 3], LookupIGTriadCensus[g], Keys@IGData"MANTriadLabels" // Grid

Out[1727]=

Indeterminate Indeterminate 38 Indeterminate 72 6 50 10 1 6 0 1 1 1 0 0
476 457 38 21 72 6 50 10 1 6 0 1 1 1 0 0

The IGGraphAtlas function provides access to the graphs listed in An Atlas of Graphs by Ronald C. Read and Robin J.
Wilson, Oxford University Press, 1998.

In[1728]:=

? IGGraphAtlas

IGGraphAtlas[n] gives graph number n from An Atlas of Graphs by Ronald
C. Read and Robin J. Wilson, Oxford University Press, 1998. This function is provided for
convenience; if you are looking for a specific named graph, use the builtin GraphData function.

In[1729]:=

IGGraphAtlas[341]
Out[1729]=

Finally, remember that Mathematica itself comes with a large database of graphs and their properties, accessible through

GraphData.

Lattice data

The IGLatticeMesh function includes a set of pre-defined two-dimensional lattice structures. Evaluate

IGLatticeMesh[] to get the list of available lattices.

The data used by IGMeshGraph was sourced from Wolfram|Alpha and Mathematica’s curated data system in April 2018.
In[1730]:=

? IGLatticeMesh

IGLatticeMesh[type] creates a mesh of the lattice of the specified type.
IGLatticeMesh[type, {m, n}] creates a lattice of n by m unit cells.
IGLatticeMesh[type, region] creates a lattice from the points that fall within region.
IGLatticeMesh[] gives a list of available lattice types.

IGraph/M Documentation | 395

In[1731]:=

IGLatticeMesh[]
Out[1731]=

Square, Hexagonal, Triangular, Trihexagonal, SmallRhombitrihexagonal, TruncatedSquare,

SnubSquare, TruncatedHexagonal, ElongatedTriangular, GreatRhombitrihexagonal, SnubHexagonal,

Rhombille, DeltoidalTrihexagonal, TetrakisSquare, CairoPentagonal, TriakisTriangular,

PrismaticPentagonal, BisectedHexagonal, FloretPentagonal, DellaRobbiaWeave, Portugal,

StackBond, Herringbone, Basketweave, PersianHexagonalWeave, Hopscotch, StretcherBond,

Pinwheel, BrickworkSquare, Chickenwire, Corridor, CorridorHorizontal, Brickweave,

Trellis, HeeschIsohedral, PPentomino, Chevron, Shingle, Zigzag, Kite, FalseCubic,

TrihexAndHex, GlideReflection, PentagonType1, PentagonType2, PentagonType3, PentagonType4,

PentagonType5, PentagonType6, PentagonType7, PentagonType8, PentagonType9, PentagonType10,

PentagonType11, PentagonType12, PentagonType13, PentagonType14, PentagonType15

IGraph/M system functions

The random number generator

IGraph/M makes use of Mathematica’s own random number generator by default, thus functions like SeedRandom and

BlockRandom have the expected effect.
In[1732]:=

SeedRandom[137];

TableBlockRandom@IGErdosRenyiGameGNM[6, 9], {3}

Out[1733]=

 , ,

BlockRandom is useful for example to get consistent graph layouts without affecting subsequent uses of the random

number generator.
In[1734]:=

g = RandomGraph[{100, 150}];

TableIGLayoutFruchtermanReingold[g], {4}

Out[1735]=

 , , ,

396 | IGraph/M Documentation

In[1736]:=

TableBlockRandomSeedRandom[1234]; IGLayoutFruchtermanReingold[g], {4}

Out[1736]=

 , , ,

IGraph/M can be configured to either use Mathematica’s built-in generator, or the default generator of the igraph C

library. The default generator of igraph will perform better, but it does not react to BlockRandom and must be seeded

with IGSeedRandom (not with SeedRandom).

Benchmark IGRandomWalk when using Mathematica’s random number generator:
In[1737]:=

g = IGGiantComponent@RandomGraph[{1000, 2000}];

In[1738]:=

IGRandomWalk[g, 1, 10000000]; // RepeatedTiming
Out[1738]=

{0.630358, Null}

Benchmark it with igraph’s default generator:
In[1739]:=

IGSeedRandomMethod "igraph"

IGRandomWalk[g, 1, 10000000]; // RepeatedTiming
Out[1740]=

{0.388662, Null}

Set the generator back to Mathematica’s:
In[1741]:=

IGSeedRandomMethod "Mathematica"

IGSeedRandom
In[1742]:=

? IGSeedRandom

IGSeedRandom[seed] seeds the current random number generator.
IGSeedRandom[Method -> type] sets the current random number generator. Valid types are "Mathematica" and "igraph".

Available Method option values are:

◼"Mathematica" uses Mathematica’s built-in random number generator. With this choice, functions like

SeedRandom and BlockRandom will IGraph/M functions as expected. Performance is not as good as with the

"igraph" generator

◼"igraph" uses the core igraph C library’s random number generator. SeedRandom and BlockRandom have no

effect on this generator. Seeding can be done with IGSeedRandom. Performance is better than with the

"Mathematica" generator.

Progress reporting

Experimental: This is experimental functionality that may change in the future.

Some igraph functions can report their progress while working. IGraph/M contains experimental functionality that

IGraph/M Documentation | 397

exposes igraph’s progress reports. This functionality may change without notice in the future.
In[1743]:=

? IGraphM`Progress`*

IGraphM`Progress`

Indicator Message Percent SetReporting

Show the progress indicator.
In[1744]:=

IGraphM`Progress`Indicator[]
Out[1744]=

Progress reporting has a performance cost, therefore it is disabled by default. To enable it, use:
In[1745]:=

IGraphM`Progress`SetReporting[True]

When a computation that supports progress reporting is running, the indicator will show the status.
In[1746]:=

compute[] := IGCommunitiesGreedy@

IGStochasticBlockModelGame0.02 IdentityMatrix[10] + 0.005, ConstantArray[800, 10];

compute[];

By default, the progress indicator is updated only if progress has increased by at least 1%. In other words, the reporting

granularity is 1%. The lower the granularity value, the higher the performance impact of reporting.

Change the reporting granularity to 10%.
In[1748]:=

IGraphM`Progress`SetReportingTrue, "Granularity" 10

Follow the progress by dynamically showing the value of internal progress variables:
In[1749]:=

Dynamic@IGraphM`Progress`Message, IGraphM`Progress`Percent

compute[];
Out[1749]=

{, 0.}

Disable progress reporting and set the granularity to its default values (in case it gets enabled again later).
In[1751]:=

IGraphM`Progress`SetReportingFalse, "Granularity" Automatic

Library version

The following symbols and functions can be used to retrieve the IGraph/M version.
In[1752]:=

? IGVersion

IGVersion[] returns the IGraph/M version along with the version of the igraph library in use.

398 | IGraph/M Documentation

In[1753]:=

IGVersion[]
Out[1753]=

IGraph/M 0.6.5 (December 21, 2022)

igraph 0.9.10-23-g5635203bd (Dec 21 2022)

Mac OS X x86 (64-bit)

In[1754]:=

? IGraphM`Information`$Version

IGraphM`Information`$Version is a string that gives the version of the currently loaded IGraph/M package.

In[1755]:=

IGraphM`Information`$Version
Out[1755]=

0.6.5 (December 21, 2022)

Support and troubleshooting
If you need help with using this package, the following support options are available:

◼ Post on the igraph discussion forum and tag the post as Mathematica.

◼ Post on the Mathematica StackExchange and tag the post as igraphm.

If you find a problem with IGraph/M or its documentation, please report it through the GitHub issue tracker or the igraph

discussion forum. Always include the output of the GetInfo[] function with problem reports.
In[1756]:=

? IGraphM`Developer`GetInfo

IGraphM`Developer`GetInfo[] returns useful information about
IGraph/M and the system it is running on, for debugging and troubleshooting purposes.

Acknowledgements
Most functions in IGraph/M are based on the igraph C library, originally written by Gábor Csárdi and Tamás Nepusz. To

cite the igraph C library in publications, see “Citing igraph” in the igraph Reference Manual. Website: https://igraph.org/

Some functions, in particular in the area of planar graphs, use the LEMON graph library. Website: https://lemon.cs.elte.hu/

Some proximity graph functions make use of the nanoflann library. Website: https://github.com/jlblancoc/nanoflann

IGraph/M was developed with the Wolfram Language Plugin for IntelliJ IDEA by Patrick Scheibe. Without the help of this

IDE, it would have been difficult to manage the complexity of this package. Website: http://wlplugin.halirutan.de/

The web version of the documentation is prepared with the M2MD package by Kuba Podkalicki. Website: https://github.-
com/kubaPod/M2MD/

The help of the Mathematica StackExchange community was invaluable while developing this package.

People who have contributed to IGraph/M:

◼ Szabolcs Horvát (main author and maintainer)

◼Henrik Schumacher (help with mesh-graph conversion and proximity graph functions)

◼ Juho Lauri (advice with the implementation of graph colouring functions)

◼ Kuba Podkalicki (implementation of IGGraphEditor[])

To cite IGraph/M in a publication, please refer to:

IGraph/M Documentation | 399

https://igraph.discourse.group/
https://mathematica.stackexchange.com/
https://github.com/szhorvat/IGraphM/issues
https://igraph.discourse.group/
https://igraph.discourse.group/
https://igraph.org/c/doc/igraph-Introduction.html
https://igraph.org/
https://lemon.cs.elte.hu/
https://github.com/jlblancoc/nanoflann
http://wlplugin.halirutan.de/
https://github.com/kubaPod/M2MD/
https://github.com/kubaPod/M2MD/
https://mathematica.stackexchange.com/

◼ Sz. Horvát, J. Podkalicki, G. Csárdi, T. Nepusz, V. Traag, F. Zanini, D. Noom, IGraph/M: graph theory and network analysis

for Mathematica, preprint (2022), doi:10.48550/arXiv.2209.09145

◼ IGraphM/ on Zenodo, doi:10.5281/zenodo.1134932

License
Copyright © 2016-2022 Szabolcs Horvát

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License

as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied

warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more

details.

You should have received a copy of the GNU General Public License along with this program. If not, see http-
s://www.gnu.org/licenses/

400 | IGraph/M Documentation

https://doi.org/10.48550/arXiv.2209.09145
https://doi.org/10.5281/zenodo.1134932
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/

