
Lecture 8
Motion in central force fields II.

8.1 Orbit in a central force field
In Lecture 7 we have seen the basic procedure for solving the equation
of motion of a body in a central force field. We can obtain r(t) and ϑ(t) as
the function of time by integrating (see Eq. (7.28)):

dt = dr√
2
m

(
E−V (r)− `2

2mr2

)
Let us now derive a differential equation for the shape of the orbit,

r(ϑ), ignoring how the body moves along the orbit in time. Using the
conservation of angular momentum, Eq. (7.26a), we can relate the time
derivative to the derivative with respect to ϑ:

mr2ϑ̇= ` ⇒ `dt = mr2 dϑ ⇔ d
dt

= `

mr2
d

dϑ
(8.1)

Rewriting the equation of motion for r, Eq. (7.21), in terms of ϑ-
derivatives we get

`

r2
d

dϑ

(
`

mr2
dr
dϑ

)
− `2

mr3 = F(r) (8.2)

Introducing the variable

u ≡ 1
r

, dr =−du
u2
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equation (8.2) will take the simpler quasilinear form

d2u
dϑ2 +u =−m

`2
d

du
V

( 1
u

)
(8.3)

Eq. (7.28) can also be written in terms of ϑ and u:

ϑ=
∫ r

r0

dr

r2
√

2mE
`2 − 2mV

`2 − 1
r2

+ϑ0 (8.4)

ϑ=−
∫ u

u0

du√
2mE
`2 − 2mV

`2 −u2
+ϑ0 (8.5)

Power law potentials of the form V (r)= arn+1 ⇒ F(r)∝ rn have partic-
ular importance. The gravitational potential and Hooke’s law are both
power laws. Substituting a V (r)= arn+1 into Eq. (8.5) we get

ϑ=−
∫ u

u0

du√
2mE
`2 − 2ma

`2 u−n−1 −u2
+ϑ0 (8.6)

This integral can be expressed in terms of trigonometric functions for
n = 1,−2,−3. We will discuss the solution for n =−2 in section 8.2.

8.1.1 Stability of a circular orbit
Let us derive the conditions for a stable circular orbit. Recall that
mr̈+ d

dr V ′(r)= 0, where V ′(r)= `2

2mr2 +V (r) is the effective potential (7.31).
Thus the condition for a circular orbit with radius r0 is

dV ′

dr

∣∣∣∣
r=r0

= 0 ⇔ `2

mr3
0
= dV

dr

∣∣∣∣
r=r0

=−F(r0) (8.7)

For a given angular momentum `, the effective potential V ′(r) reaches its
minimum or maximum at the radius of the circular orbit r0 (see figures
8.1 and 8.2).

What happens if a body moving on a circular orbit is slightly per-
turbed? The orbit will be stable if V ′(r) is convex in r0, i.e. it has a
minimum (Fig. 8.1); and unstable if V ′(r) is concave in r0, i.e. it has a
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Figure 8.1: Example potential that leads to stable circular orbits.
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Figure 8.2: Example potential that leads to unstable circular orbits.

maximum (Fig. 8.2). The condition for the stability of a circular orbit is
therefore

d2V ′

dr2

∣∣∣∣
r=r0

> 0 ⇒ −dF
dr

∣∣∣∣
r=r0

+ 3`2

mr4
0
> 0

Using Eq. (8.7) and keeping in mind that F(r)< 0 we get the condition

dF
dr

∣∣∣∣
r=r0

<−3
F(r0)

r0
⇒ r0

F(r0)
dF
dr

∣∣∣∣
r=r0

>−3 (8.8)

If the force follows a power-law F(r)=−krn then this condition reduces
to n >−3.
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V (r ) = - k

r3

Figure 8.3: Examples of unstable circular orbits. If V (r)=−k/r3, a small
perturbation to a circular orbit will increase further. The body will
either escape or collide with the centre.

8.1.2 Bertrand’s theorem
An orbit is called closed if it returns onto itself, or equivalently: if r(ϑ)
is a periodic function with a period that is an integer multiple of 2π.
What sort of potentials will lead to a closed orbit?

It is clear that in order for the orbit to be closed, it must be bounded,
and it must not collide with the centre. This happens if the effective
potential V ′(r) has a minimum and condition (8.8) is satisfied.

Let us now derive conditions for a closed orbit for the case when the
orbit differs only slightly from a circle. Defining J(u) ≡−m

`2
d

du V ( 1
u ), we

can write Eq. (8.3) as
d2u
dϑ2 +u = J(u).

Expanding J(u) into Taylor series around the inverse radius of a circular
orbit u0 = 1/r0, we obtain

d2u
dϑ2 +u = J(u0)+ dJ

du

∣∣∣∣
u=u0

∆u+ d2J
du2

∣∣∣∣
u=u0

∆u2

2
+ . . . ,

where ∆u(ϑ)= u(ϑ)−u0. Ignoring terms of second or higher order we get

4



�������������� β = � ������� ���� β = � �(�) = -� ��� β = �

Figure 8.4: Examples of small deviations from the circular orbit for
β= 1,2,3. β= 1 and 2 correspond to the gravitational force and Hooke’s
law, respectively, so the orbits are exactly closed. For β = 3 the orbit
is only closed in the limit of small deviations from the circle. In this
example a large enough perturbation was used to make it clear that
the orbit is not exactly closed. The orbits shown are exact solutions of
Eq. (8.3).

the approximation
d2∆u
dϑ2 +∆u

(
1− dJ

du

∣∣∣∣
u=u0

)
︸ ︷︷ ︸

β2

≈ 0 (8.9)

This is the familiar equation of a harmonic oscillator. In order for the
orbit to be stable, β2 must be positive, otherwise ∆u(ϑ) would grow in
magnitude exponentially. Plugging in the definition of J(u) we get the
following expression for β:

β2 = 3− u0

F(u0)
dF
du

∣∣∣∣
u=u0

= 3+ r0

F(r0)
dF
dr

∣∣∣∣
r=r0

(8.10)

The condition that β2 > 0 is in accordance with condition (8.8).
The general solution of equation (8.9) is

∆u(ϑ)=C cos(ϑ−ϑ0) ⇔ u(ϑ)= u0 +C cos(ϑ−ϑ0), (8.11)
where C is some constant. The inverse distance from the origin, u,
will oscillate around u0 with frequency β. Example orbits are shown in
Fig. 8.4.
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Note: Figure 3.13 in the Goldstein et al. book is incorrect. If the force
is pointing towards the origin, the orbit must always curve towards
the origin. See Fig. 8.4 for actual orbits computed numerically for
β= 1, 2 and 3.

The orbit is closed if r(ϑ) is a periodic function with period b×2π,
where b ∈ Z is an integer. Eq. (8.11) will have such a period if β is a
rational number a

b ∈Q. For a given potential, β can only be a rational
number if it is a constant independent of r0 or `. If β were a non-
constant function of r0, it would vary continuously based on equation 8.10,
which contradicts the requirement that β is rational.

Since β is constant, we can treat Eq. (8.10) as a differential equation
to find what forms of potential (or force) lead to closed orbits. The
solution is a power-law:

F(r)=− k
r3−β2 (8.12)

We found that the orbit will be closed for any power-law potential with
an exponent n = −(3−β2) > −3 if β = p

3+n is a rational number. For
β= 1 we obtain n =−2, the gravitational force. For β= 2 we obtain n = 1,
Hooke’s law. It turns out that for other values of β the orbit will only be
approximately closed, for small deviations from a perfect circle.

Generally, the orbit is closed only for β= 1, F(r) =− k
r2 and for β= 2,

F(r)=−kr. This result was derived by the French mathematician Joseph
Betrand and is known as Betrand’s theorem. It can be obtained by
taking into account higher order terms in the Taylor expansion of J(u)
and looking for the solution of Eq. (8.3) in the form of a Fourier series.

8.2 The Kepler problem
Let us compute the orbit of a body in a gravitational potential, V (r)=−k/r
and F(r) = −k/r2. This is known as the Kepler problem. Substituting
this potential into Eq. (8.5) we get the integral

ϑ=ϑ′−
∫

du√
2mE
`2 + 2mku

`2 −u2
. (8.13)
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Recall that d
dx arccos x =− 1p

1−x2 . With the help of a variable change, we
can compute integrals of the general form∫

dx√
α+βx+γx2

= 1p−γ arccos

(
− β+2γx√

β2 −4αγ

)
. (8.14)

Matching up the coefficients α,β and γ with Eq. (8.24),

α= 2mE
`2 , β= 2mk

`2 , γ=−1,

we get the solution

ϑ=ϑ0 −arccos
`2u
mk −1√
1+ 2E`2

mk2

. (8.15)

Inverting the relationship,

u = 1
r
= mk

`2

1+
√

1+ 2E`2

mk2 cos(ϑ−ϑ0)

 (8.16)

This is the general equation of a conic section with eccentricity e in polar
coordinates when the origin is chosen to be in the focus:

r = const.
1+ ecos(ϑ−ϑ0)

. (8.17)

The eccentricity can be read off from Eq. (8.16):

e =
√

1+ 2E`2

mk2

Based on the value of the eccentricity, a conic section can be one of:
e > 1, E > 0, hyperbola
e = 1, E = 0, parabola
e < 1, E < 0, ellipse
e = 0, E =−mk2

2`2 , circle

In Lecture 7, Eq. (7.38), we have already computed the radius of a circular
orbit, corresponding to e = 0:

r0 = `2

mk
(8.18)
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Figure 8.5: Elliptical orbit.

8.2.0.1 Elliptical orbits

If 0 ≤ e < 1, then the orbit will be an ellipse. The polar equation of an
ellipse in terms of its eccentricity e and half-major axis a is

r = a(1− e2)
1+cos(ϑϑ0)

(8.19)

For convenience, let us choose ϑ0 = 0. Then the minimal and maximal
distances of the orbit from the origin, called apsidal distances, will occur
at ϑ = 0 and ϑ = π, respectively. These points of the orbit are called
periapsis and apoapsis in general (Fig. 8.5).

Apoapsis and periapsis are from Latin apsis, “arch”, and Greek apo,
“away from” and peri, “near to”.

When talking about the orbits of planets in the solar system,
the common terms are perihelion and aphelion, from Greek Helios,
“Sun”. When talking about satellites of Earth, sometimes perigee
and apogee are used from greek Ge, “Earth”.

In terms of the semi-major axis, apsidal distances are r1,2 = a(1± e).
We have already calculated these in terms of E and ` in Lecture 7,
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Eq. (7.37):

r1,2 =− k
2E

± 1
2

√
k2

E2 + 2`2

mE

The semi-major axis can then be obtained as the arithmetic mean of the
apsidal distances:

a = r1 + r2

2
=− k

2E
(8.20)

A notable feature of this result is that the semi-major axis only depends
on the total energy E, but not the angular momentum `. This result has
significance when discussing the Bohr model of the atom.

The eccentricity can be expressed in terms of the angular momentum
` and the semi-major axis as

e =
√

1− `2

mka
(8.21)

8.3 Motion in the Kepler problem
Now we have calculated the shape of the orbit, r(ϑ), in a gravitational
field. Next we will compute how the body moves along this orbit in time
and obtain ϑ(t), which can be substituted back into the expression of r(ϑ)
to obtain r(t).

ϑ(t) can be obtained as the solution of the differential equation de-
scribing the conservation of angular momentum,

mr(ϑ)2 dϑ
dt

= ` ⇒
∫ ϑ

ϑ0

r(ϑ)2 dϑ= `

m
t.

Substituting in the expression of r(ϑ) we get the integral

t = `3

mk2

∫ ϑ

ϑ0

dϑ
(1+ ecosϑ)2 (8.22)

Computing this integral and inverting the resulting t(ϑ) relationship
is possible, but lengthy and tedious. The parabolic case is discussed in
Goldstein sec. 3.8.
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Let us consider the elliptic case, i.e. 0 ≤ e < 1 and introduce the
variable ψ defined through

r(ψ)= (const.)(1− ecosψ) (8.23)

ψ is called the eccentric anomaly and was introduced originally by Kepler
as an aid in his orbital calculations. The name used for our ϑ variable at
the time was true anomaly or equated anomaly. Since formal equations
were not commonly used in Kepler’s time, he described these quantities
using geometric constructions.

Over the interval [0,2π], ψ has a one-to-one relationship to ϑ. By
considering the cases when r reaches its minimal and maximal values,
as well as r = a, we see that

ψ= 0⇔ϑ= 0

ψ= π

2
⇔ϑ= π

2
ψ=π⇔ϑ=π

For other angles, ψ 6=ϑ when e 6= 0.
When written in terms of the eccentric anomaly ψ, the integral (8.22)

takes a much simpler form:

t =
√

ma3

k

∫ ψ

0
(1− ecosψ) dψ (8.24)

This integral is now readily carried out to obtain Kepler’s equation

2π
τ

t =ψ− esinψ, (8.25)

where τ is the period of the orbit obtained by putting ψ= 2π in Eq. (8.24):

τ= 2πa
3
2

√
m
k

(8.26)

The quantity 2πt/τ is called the mean anomaly. It runs from 0 to 2π and
it changes proportionally with the time t.

Now we have a way to compute the position of the body along the
orbit based on the time:
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Figure 8.6: Kepler’s equation relates the mean anomaly to the eccentric
anomaly: 2π t

τ
=ψ− esinψ.

1. Compute the eccentric anomalyψ from the time t (ormean anomaly)
based on Kepler’s equation

2. Compute the true anomaly ϑ from the eccentric anomaly.

3. Finally compute r(ϑ) based on Eq. (8.16).

Kepler’s equation is a transcendental equation that is usually solved
numerically. After Kepler described the problem, many mathematicians
developed numerical schemes for solving this equation, including Kepler
himself. The relationship between the mean and eccentric anomalies is
shown in Fig. 8.6 for various values of the eccentricity e.

Equations for the relationship between ϑ and ψ can be derived based
on the definition of ψ, Eq. (8.23):

1− ecosψ= 1− e2

1− ecosϑ
⇔ tan

ϑ

2
=

√
1+ e
1− e

tan
ψ

2
(8.27)
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See Fig. 8.7 for data published by Kepler, based on Tycho Brahe’s obser-
vations, connecting the eccentric anomaly and the mean anomaly.

Kepler’s 3rd law

Equation 8.26 relates the semi-major axis to the period of the orbit and
is an expression of Kepler’s 3rd law. It can also be derived based on
the constant areas velocity, Lecture 7, Eq. (7.17). The ray connecting the
body to the centre sweeps equal areas A in unit time,

dA
dt

= `

2m
. (8.28)

Integrating this relation for a full period we get

A = τ`

2m
,

where A is the area of the ellipse. A can be written in terms of the semi-
major and semi-minor axes, a and b, as A = abπ. The semi-minor axis
can be expressed in terms of the semi-major axis and the eccentricity,
b = a

p
1− e2, then based on Eq. (8.21), b =p

a `p
mk

. Substituting this back
into (8.28) we obtain again

τ= 2πa
3
2

√
m
k

Kepler originally formulated his law for the periods of the planets
in the solar system: the square of the period of a planet’s orbit is pro-
portional to the cube of its semi-major axis. This is equivalent to saying
that the constant of proportionality

p
m/k is the same for all planets. To

see why this is true, remember that m = (m1m2)/(m1+m2) is the reduced
mass of the system. If m2 À m1 (as is the case with the mass of the Sun
compared to the mass of the planets) then m1 ≈ m. The constant k in the
gravitational force law is Gm1m2, so√

m
k

=
√

m
Gm1m2

≈
√

1
Gm2
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Figure 8.7: Tables relating the eccentric anomaly, anomalia eccentri, ψ,
with the true anomaly (also called equated anomaly), anomalia coæquata,
ϑ, for the eccentricity of Mars; from Kepler’s Rudolphine Tables, 1627.
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Figure 8.8: example caption

8.4 Scattering in a central force field
8.4.1 Transformation to laboratory coordinates

Reminder

Let r1,m1 and r2,m2 be the positions and masses of two bodies. In
Lecture 7 we have replaced these coordinates by the relative position
of the bodies, r, and the position of the system’s centre of mass, R.

R= m1r1 +m2r2

m1 +m2

r= r1 −r2

r1 =R+ µ

m1
r

r2 =R− µ

m2
r
, (8.29)

where
µ= m1m2

m1 +m2
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is the reduced mass. We have shown that if the potential energy of
the system only depends on the distance of the bodies then

V= Ṙ= const.

and the system is equivalent to a single body at position r moving in
a central potential V (|r|).

Let us denote the coordinates in the centre of mass reference
frame by r′1 and r′2. Then

v1 = ṙ1 = ṙ′1 + Ṙ= v1 +V
v2 = ṙ2 = ṙ′2 + Ṙ= v2 +V
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