
Quiz Solution

PHYS205 Electricity and Magnetism

We shall assume that the magnetic field B and the angular velocity vector
ω point in the same direction (ω·B> 0). The Lorentz force causes the positive
charges to move outward in the sphere, so a negative space charge will build
up in the interior, while the surface charge will be positive.

The charges distribute themselves in such a way that the electric field
balances the Lorentz force. The sphere is not a perfect conductor, so in a
steady state the charges must move with exactly the same velocity v=ω×r
as the sphere at every point. (To keep the charges in motion relative to the
sphere an electromotive force would be necessary.)

E=−v×B (1)

The space charge density ρ can be found by taking the divergence of this
equation.

ρ = ε0∇·E
= ε0∇· (v×B)
= ε0(v ·∇×B−B ·∇×v)

(2)

Here we used the fact that a mixed product does not change when its terms
are cyclically permuted: a·(b×c)=b·(c×a). According to Maxwell’s equations
∇×B=µ0j=µ0ρv.

∇×v=∇× (ω×r)=ω∇·r− (ω ·∇)r= 2ω

Substituting these results back into equation (2), ρ = ε0µ0v2ρ−2ε0ω·B. Using
the formula ε0µ0 = 1/c2 we get

ρ(1−v2/c2)=−2ε0ω ·B. (3)

Since v ¿ c, 1−v2/c2 ≈ 1. To use equation (3) to get the space charge density,
the magnetic field B needs to be known. But the homogeneous magnetic field
will be distorted by the field originating from the circulating charges in the
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sphere. If the sphere is not spinning very fast, this correction is relatively
small and the following method can be used to approximate B:

First we assume that the applied homogeneous magnetic field is un-
changed and denote it by B0, then calculate the space charge ρ and current
densities j = ρv. Next, we use these currents to find the correction B1 to
the homogeneous field, and find the corrected charge densities and currents
using B0+B1. With these new current densities the next correction B2 can be
calculated. The result can be made more accurate by doing more iterations.

Without carrying out the actual calculations, we know that B1 ∼ µ0I/R,
where I is a current-like quantity: I ∼ ωRρR2. But ρ ∼ ε0ωB0, so B1 ∼
µ0ε0ω

2R2B0 = v2/c2B0. Thus, when using the v ¿ c approximation, the
corrections to the homogeneous field due to the induced rotating space charge
can be neglected. Further on, B shall be considered homogeneous.

Now we proceed with calculating the electric field and potential inside the
sphere. Substituting v=ω×r into equation (1) we get E=−r(ω ·B)+ω(B ·r).
ω and B are parallel, so E=−a(ω ·B), where a is the distance from the axis
of rotation: if we choose ẑ‖ω, then a= xx̂+ yŷ.

It must be noted here that the electric field can compensate the Lorentz
force only if ∇× (v×B) = 0. This is true for a homogeneous B-field approx-
imation when the axis of rotation is parallel to the magnetic field, but not
otherwise. If the Lorentz force can not be completely cancelled, there will
always be some charge motion relative to the sphere until the energy dissipa-
tion causes the spinning sphere to stop.

The electric potential inside the sphere is

φ= a2

2
(ω ·B)+φ0

In spherical coordinates φ = φ0 − r2 sin2θ (ω ·B)/2, where θ is the angle be-
tween r and the axis of rotation. Unlike E, the potential is continuous over
the surface of the sphere, so the boundary condition φ=φ0−R2 sin2θ (ω ·B)/2
may be used to also find φ outside the sphere of radius R.

Let us approximate a potential that satisfies this boundary condition with
multipole terms! The monopole term must be zero because the total charge of
the sphere is zero. The dipole term is also zero because the dipole field does
not match the symmetry of this system. Therefore the dominant part of the
sought potential must be a quadrupole potential. It is easy to see that the
potential φ(2) of a quadrupole that was created by superposing two dipoles
along their axes (to satisfy the requirement of azimuthal symmetry) satisfies
the boundary conditions exactly:

φ(2) = (some constant)
3sin2θ−2

r3 .
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We need to seek no further: outside the sphere the potential will be

φ= R5(ω ·B)
2r3

(
sin2θ− 2

3

)
.

The surface charge density is σ= ε0(∂rφoutside −∂rφinside)
∣∣
r=R .

σ= ε0R(ω ·B)
(
5
2

sin2θ−1
)

By integrating this over the surface of the sphere we see that indeed the total
surface charge equals the total volume charge in magnitude, so the sphere
has no net charge.

Summary
The potential inside the sphere is

φ= a2

2
(ω ·B)+φ0 = r2 sin2θ

2
(ω ·B)+φ0.

The electric field inside the sphere is

E=−a(ω ·B)

Er =−rsin2θ (ω ·B)
Eθ =−rsinθ cosθ (ω ·B).

The potential outside the sphere is

φ= R5(ω ·B)
2r3

(
sin2θ− 2

3

)
.

The electric field outside the sphere is

Er =−3R5(ω ·B)
2r4

(
sin2θ− 2

3

)
= R5(ω ·B)

4r4 (1+3cos2θ)

Eθ = R5(ω ·B)
r4 cosθsinθ.

The surface charge density is

σ= ε0R(ω ·B)
(
5
2

sin2θ−1
)
.
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