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1. See the book.

2. If currents are localized into a domain Ω of space, then the magnetic
vector potential can be written as

A(R)= µ0

4π

∫
Ω

j(r)
|R−r| d3r

(See fig. 1 for notations.) The first term of the multipole expansion is

A(0)(R)= µ0

4π
1
R

∫
Ω

j(r) d3r

Therefore it is sufficient to prove that the volume integral of the current
density over Ω is 0. For this, let us calculate the divergence of jx, where
x is a position coordinate!

∇· (jx)= j ·∇x︸ ︷︷ ︸
jx

+ (∇· j)︸ ︷︷ ︸
0

x = jx

We know that for any current and charge distribution ∇ · j+ ∂
∂tρ = 0,

therefore in the stationary case ∇· j =− ∂
∂tρ = 0. So the x component of

the volume integral of j can be written as∫
Ω

jx(r) d3r=
∫
Ω
∇· (xj(r)

)
d3r=

∫
∂Ω

(
j(r) ·n(r)

)
x d2r= 0

Using the Gauß–Ostrogradksi theorem, the volume integral on Ω can
be converted into a surface integral on over the boundary ∂Ω. But there
are no currents outside the domain Ω, so the volume integral can be
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R

R − r

r

Figure 1:
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extended into a slightly bigger region (one the boundary of which j= 0),
therefore the surface integral is 0.

The same reasoning can be applied to prove that the projection of the
volume integral along any any axis is 0.

3. It can easily be shown that if there is no magnetic field inside a super-
conductor, then just above the surface of the superconductor the normal
component of B is 0. Suppose that the normal component weren’t zero:
in this case the surface integral of B over a “pillbox” surface around the
surface of the superconductor would be non-zero, which contradicts the
Maxwell-equation ∇·B= 0.

“pillbox” surface

B=0

Now let us calculate the force acting on a small magnet above a su-
perconducting plane! We can use the method of images: The normal
component of the magnetic field, B⊥, must be zero just above the sur-
face. This could be achieved by removing the superconducting plane and
inserting another small magnet, one that is exactly the mirror image of
the original magnet with respect to the plane (see fig. 2). The magnetic
field is determined at all points in space if the boundary conditions
are specified. Therefore the magnetic field in the “upper” half-space
will be the same in the presence of the superconductor as without the
superconductor, but with the mirror magnet. The force on the magnet
will be just the same as the force exerted by the mirror-magnet.

The vector potential of a magnetic monopole m is

A(r)= µ0

4π
m×r

r3 .

r is the position vector relative to the magnet. By taking the curl we
find the magnetic field:

B(r)=∇×A(r)= µ0

4π
3r̂(r̂ ·m)−m

r3

The energy of a magnetic dipole m in a field B is W =−m ·B, and the
force acting on it is F =−∇W .
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Figure 2: The magnetic dipole and its mirror image.

Let the dipole moment of the magnet be m, the dipole moment of the
mirror magnet be m′. The energy associated with them is

W =−µ0

4π
3(m · r̂)(m′ · r̂)−m ·m′

r3

=−µ0

4π
3m2 cos2ϑ−m2 cos(2π−2ϑ)

r3

=−µ0

4π
m2

2r3 (3+cos2ϑ)

The force acting on the magnet is

F =−∇W = µ0

4π
3m2

2r4 (3+cos2ϑ)

The magnet will adopt an orientation that minimizes its energy, i.e.
maximizes cos2ϑ: ϑ= 0 or ϑ=π. The magnet’s axis will be perpendicu-
lar to the superconducting surface.

4. One possible solution is to use the method of images. The image charge
distribution can be constructed in the following way: take two parallel
charged wires with linear charge densities +λ, and −λ. Let the dis-
tance s between the wires tend to 0 while keeping the product λs = p`
constant. It can be shown that when the field of this charge distribution
(let us call it a linear dipole) is superposed onto a homogeneous field,
a cylindrical equipotential surface is created (show that the resulting
electric field is perpendicular to the surface of a cylinder). The value of
p` must be adjusted so that we get a cylindrical equipotential of radius
R.
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It is a legitimate question to ask: how do we come to the conclusion
that the mirror charge distribution must be a linear dipole? We saw
on the lecture that a dielectric of any shape can be imagined as two
superposed homogeneous charge distributions, one positive and the
other negative. When there is no external field, they cancel out, but
when a field is applied, they separate by a very small distance.

If we are concerned only about electrostatics, a dielectric of εr → ∞
can be considered equivalent to a conductor. This may suggest that
taking two oppositely charged solid cylinders, slightly separated in a
direction perpendicular to their axis, will give the correct mirror charge
distribution. According to Gauß’ law, outside the cylinder the field of
this configuration is the same as the field of a linear dipole.

The final result is:

potential: V =E0 ·r(R2/r2 −1),

surface charge: σ= E0ε0 cosϑ,

where ϑ is the angle measured from the direction of E0 along the
cylinder’s perimeter.
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