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1.

2. (a) A point charge is in equilibrium if the force acting on it is 0, i.e.
the electric field is zero at the position of the charge.
The equilibrium is stable if when the charge is displaced from the
equilibrium position by a small distance, the forces acting on it
push it back towards the equilibrium point (and not away from it).
Suppose that there is a stable equilibrium point in a static electric
field. The criterion of stability requires that the electric field point
inwards on every point of a surface enclosing the equilibrium
point. This would mean that the surface integral of the electric
field in non-zero on this surface—a result which contradicts that
the equilibrium point is in vacuum, i.e. there are no charges inside
the surface. Therefore, the original assumption, that there exists
a stable equilibrium point, must be false.

(b) We can use a method similar to that employed in the previous
point. In this case, the force acting on a magnetic dipole is the
negative gradient of its potential energy, i.e. F=∇(µ ·B), where µ
is the dipole moment of the small magnet.

i. First, let us take the case when µ is constant (its orientation
is fixed), and calculate the divergence of F. Choosing the z
axis to be parallel with µ,

∇·F=∇2µ ·B=µ∇2Bz.

But it can be proven that the Laplcaian of any component of
the magnetic field is 0 in vaccum. Taking the curl of both sides
of the equation ∇×B= 0, and using that ∇·B= 0, we get

∇× (∇×B)= 0

∇(∇·B)−∇2B= 0

(∇2Bx,∇2By,∇2Bz)= 0.

The divergence of F is zero, therefore, in analogy with the case
of the electric field, a small magnet (with fixed orientation)
cannot have a stable equilibrium point in a magnetic field.

ii. Now let us take the case when the dipole may rotate freely. If
there is some friction (e.g. the magnet is moving in a viscuous
medium), then, given sufficient time, the magnet will adopt
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an orientation that is parallel with the B field. Its potential
energy will be Wd = −µ ·B = −µB. In a stable equilibrium
point the potential energy has a minimum. To simplify the
calculations, let us first consider the energy of a small piece of
magnetizable material. Its magnetic moment is proportional
to the magnetic field, µ= kB, so its potential energy is Wm =
−kB2. Since Wm can be obtained from Wd by a monotonous
tranformation, for a positive k, wherever Wm has a minimum,
Wd has a minimum too. So the results obtained for a piece of
magnetizable material (with k > 0) are applicable to a constant
magnet too.
Let us calculate the divergence of the force acting on a piece
of magnetizable material:

∇·Fm =−∇2Wd = k∇2B2

But ∇2B2 can be shown to be positive or zero:

∇2B2 =∇2B2
x +∇2B2

y +∇2B2
z

=∇(2Bx∇Bx)+·· ·
= 2|∇Bx|2 +2Bx∇2Bx +·· ·
= 2|∇Bx|2 +·· · ≥ 0,

and therefore ∇·Fm ≥ 0.
With a reasoning similar to the one used in the previous point
it can be shown that a force field having ∇ ·F ≥ 0 only has
unstable equilibrium points. (The integral over the Gaussian
surface drawn around the equilibrium point is positive or zero,
therefore there must exist at least some points on it where F
is pointing outwards, or F must be zero everywhere.)
Therefore neihter a small piece of magnetic material with
k > 0, nor a little magnet has stable equilibrium points in
a static magnetic field. But for a diamagnet k < 0, i.e. the
magnetic moment is always oriented antiparallel to B, so a
diamagnet does have stable equilibrium points.

3. Let us imagine that the atmosphere is divided into very thin horizontal
layers, within which the index of refraction is constant.

Let ni denote the index of refraction of the ith layer from the ground,
and ϕi denote the altitude of the star when viewed from that layer.
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Writing Snell’s law of refraction for the consecutive layers,

n1 sin(π/2−ϕ1)= n2 sin(π/2−ϕ2)
n2 sin(π/2−ϕ2)= n3 sin(π/2−ϕ3)

. . .
ni sin(π/2−ϕi)= ni+1 sin(π/2−ϕi+1)

. . .

we see that n1 sin(π/2−ϕ1)= ni sin(π/2−ϕi) for any i. As we go very high
up, the atmosphere gets thinner, so n approaches 1 and ϕ approaches
ϕr. Thus the real altitude of the star can be obtained from the equation

nground sin(π/2−ϕv)= sin(π/2−ϕr

4.

5. Let the magnitude of the charge of the ions be q. The electrostatic
energy of one ion the electric field of others is

Wion =− 1
4πε0

2q2
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The Taylor expansion of ln(1+ x) is

ln(1+ x)= x− x2

2
+ x3

3
− x4

4
+·· · .

Substituting x = 1 we find that

ln2= 1− 1
2
+ 1

3
− 1

4
+·· · ,

and therefore

Wion =− 2
4πε0

q2

a
ln2

Notice that if we add the energy of all ions in the crystal, we get double
the energy of the complete crystal. (If we have only two ions, the energy
of the complete system is the energy of one ion in the electric field of
the other. Adding the energy of both gives twice this value.) So the
electrostatic energy of the crystal per ion is

W
ion

=− 1
4πε0

q2

a
ln2
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6. Water is incompressible, so according to the continuity equation ∇·v= 0.
Since ∇×v= 0, there exists a scalar fieldψ so that v=−∇ψ, and ∇2ψ= 0.
This is completely analogous with electrostatics.

Now let us examine the problem from the reference frame moving
together with the ball. The electrostatic analogy still holds in this
reference frame. In this reference frame the ball is not moving, but the
water is flowing past the ball. Since the water cannot flow into or out of
a solid ball, on the surface of the ball it must be true that

v⊥ =−∂ψ/∂r = 0. (A)

(r is the radial coordinate measured from the centre of the ball.) Very
far from the ball the flow is constant, v= v0 (where −v0 is the velocity
of the ball in the original reference frame.)

How should the homogeneous flow field v0 be changed so that condi-
tion (A) will be satisfied? We need to find a field v′ which vanishes at
infinity, cancels the normal component of v0 on the surface of the sphere,
and satisfies ∇·v′ =∇×v′ = 0. The sum v0 +v′ will be the solution.

We have seen a similar problem in electrostatics: a conducting sphere
placed in a homogeneous electric field. The difference is that there
the tangential (and not normal) component of the electric field needed
to be cancelled on the surface of the sphere. There we found that the
distortion in the field caused by the sphere is a dipole field.

It turns out that a suitable chosen dipole field can cancel not only the
tangential component of a homogeneous field on the surface of a sphere,
but the normal component too. A dipole potential has the form

ψ= p ·r
r3 ,

where p is a constant vector, and the dipole field is

v′ =−∇ψ= 3(r̂ ·p)r̂−p
r3 .

Let us choose p so that it is parallel to v0 and calculate the normal
components of v0 and v′ at the surface of the sphere. We shall use
spherical coordinates, with θ being the angle between p and r. Let R
be the radius of the sphere.

v0⊥ = v0 · r̂= v0 cosθ

v′⊥ = v′ · r̂= 3pcosθ− pcosθ
R3 = 2p

R3 cosθ
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If p is chosen so that 2p/R3 =−v0 then the v′ will cancel the normal
component of v0 on the surface of the sphere. The solution is

v= v0 − R3

2r3

(
3(r̂ ·v0)r̂−v0

)
in the reference frame moving together with the ball.
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